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Abstract

In the swiftly evolving field of artificial intel-
ligence, large language models (LLMs) have
become powerful tools for crafting human-like
text. However, their integration into real-world
settings raises ethical, safety, regulatory, and
legal concerns due to the potential for gen-
erating inappropriate, misleading, or biased
content. To address these issues, guardrails
designed for LLMs regulate information flow
within these systems to prevent or mitigate un-
desirable outcomes. Our study compares two
primary guardrail frameworks: Llama Guard
by Meta and NeMo Guardrails by NVIDIA,
representing LLM-based and vector similarity
search methodologies, respectively. Through
empirical evaluation, we assess the efficacy of
these models in practical business contexts such
as guarding against the mention of competi-
tor organizations. Furthermore, we propose a
novel integration of these frameworks using
ensemble techniques that markedly enhances
performance. The resulting ensemble mod-
els harness the strengths of Llama Guard and
NeMo, reducing both false positives and false
negatives, and ensuring accurate identification
of unsafe prompts. Incorporating prompt em-
beddings further improves performance, em-
phasizing the role of contextual information in
prompt classification. Using ensemble methods
such as Random Forest and K-Nearest Neigh-
bors with prompt embeddings, performance
reaches 99.4%. This study advances responsi-
ble AI usage by enhancing user interaction safe-
guards with LLMs, focusing on deployment,
model effectiveness, and ensemble techniques
for guardrail enforcement.

1 Introduction

Content Moderation Guardrails Despite their
impressive capabilities, LLMs are inherently
stochastic models and often generate “hallucina-
tions”: nonsensical, inconsistent, or incorrect con-
tent (et al., 2023b; Anthropic). GPT-4 achieves

60% accuracy on adversarial questions (OpenAI,
2023); Llama 2 scores 50% on TruthfulQA, a mea-
sure of how well Llama LLMs can generate reli-
able outputs that agree with factuality and common
sense (et al., 2023a). The importance of content
moderation is unparalleled today, as unauthorized
content generation can harm individuals, tarnish
a company’s reputation, and lead to legal and fi-
nancial consequences (Ashley Belanger). LLM de-
ployment raises legitimate concerns, underscoring
the critical need for effective content moderation
that substantially mitigate generation of undesired
content. Guardrails are mechanisms or systems
designed to control, limit, or guide the generation
of text to ensure it aligns with ethical standards,
societal norms, legal requirements, and business
needs (Dong et al., 2024). A guardrail framework
should stop undesired user prompts from reach-
ing the model as well as stop undesired content
generated by the model from reaching the end user.

We focus on two guardrail approaches: Llama
Guard, a state-of-the-art (SoTA) LLM-based clas-
sification model trained not only to classify content
as harmful or inappropriate but to identify the vio-
lated category for inputted toxic content (Inan et al.,
2023) and NeMo Guardrails, a SoTA vector sim-
ilarity search model, that offers a framework for
establishing conversation flows based on tags ap-
plied to prompts or model outputs (Rebedea et al.,
2023a). NeMo employs similarity search to match
prompts and model outputs against predefined poli-
cies to detect violations. We seek to identify which
approach, LLM-only or vector-based search, pro-
duces the highest accuracy guardrails.

Llama Guard Meta AI addressed the shortcom-
ings of previously constructed guardrail approaches
with Llama Guard (Inan et al., 2023). Whereas
other guardrails enforce a fixed policy “safe” vs.
“unsafe”, which does not generalize or adapt well
to emerging policies, Llama Guard utilizes a safety
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risk taxonomy: a set of policies categorized as in-
puts that need moderation. This taxonomy includes
categories such as “hate” and “suicide & self-harm”
but can be expanded to new categories through fine-
tuning with a novel dataset, as we do in this study.
It achieves competitive performance in evaluations
like ToxicChat and the OpenAI Moderation Evalua-
tion, surpassing benchmarks in accurately identify-
ing content within its finely tuned safety categories
(Inan et al., 2023; Markov et al., 2023).

NeMo Guardrails NeMo Guardrails by
NVIDIA introduces "programmable rails" that
dynamically control prompts sent to and generated
by LLMs, offering flexibility without requiring
model fine-tuning (Rebedea et al., 2023b). Unlike
traditional methods embedding constraints during
training, NeMo uses a toolkit where rails can
be easily added, updated, or deleted, enhancing
customization and reducing overhead. NeMo
Guardrails utilize a specialized language and a
dialogue manager to interpret Colang scripts,
enabling dynamic implementation of user-defined,
model-agnostic rails that enforce safety and
relevance in LLM outputs. Topical rails guide
LLM responses within specific conversational
paths. NVIDIA’s evaluation using Anthropic
Red-Teaming and Helpful datasets demonstrated
that combining moderation rails significantly
enhances LLM reliability, with the GPT-3.5-turbo
model blocking nearly 99% of harmful content
(up from 93% with one rail) while mistakenly
blocking only 2% of helpful requests (et al., 2022;
Perez et al., 2022). However, a limitation is that
NeMo Guardrails’ reliance on a runtime engine
may introduce latency and computational costs
as it evaluates each prompt individually without
context from previous interactions.

1.1 Proposed Solution
Our objective is to assess and compare the perfor-
mance of these types of models and examine the
practical considerations of what it would take to
implement these frameworks for business use cases.
Moreover, we demonstrate how these two existing
guardrail frameworks can be enhanced with the use
of ensemble techniques and rigorously test their
capabilities.

LLM based solution We fine-tune Llama Guard
for a new guardrail category. To achieve this, we
create our own category outside of the seven al-
ready included in Llama Guard. We have chosen

Figure 1: Our Approach for Guardrail Evaluation and
Enhancement

to handle a unique issue: guarding against discus-
sion of competitors as explained in section B.1.
Discussion of competitors brings up legal concerns
and compliance issues for many companies. Our
goal is to guard against prompts or queries about
competitors. Using a fictitious beverage company,
A Soda Company, we generate synthetic prompt
data with GPT-4 and manually label them as un-
safe or safe based on whether or not they violate
the new guardrail category. Any questions asking
for comparisons with or information about com-
petitor companies are considered unsafe. We then
fine-tune Llama Guard in section 2.2 to evaluate
new queries against this custom category.

Vector-search based solution We programmat-
ically create the same guardrails in NeMo for the
new category of competitors and subsequently per-
form a comparison study between Llama Guard
and NeMo. We define a dialogue flow for safe vs.
unsafe prompts and provide the system with sam-
ple prompts to guide its decison-making. NeMo
implementation is detailed in section 2.3.

Ensemble solution Llama Guard offers a frame-
work for effective LLM fine-tuning to enhance
category-based guardrail performance. Solutions
like Llama Guard focus on fine-tuning and align-
ing LLMs but face challenges due to the non-
deterministic nature of generative models. These
models cannot always produce expected outputs,
and bad actors can exploit them with prompt in-
jections (Liu et al., 2024). Fully LLM-based ap-
proaches cannot completely thwart such exploits,
and frequent additional fine-tunings are required
due to evolving requirements, adding costs.

NeMo, on the other hand, provides a framework
for programming specific topical and execution
guardrails, along with a runtime engine to moni-
tor LLM-powered chat services. Although more
rigid and resource-intensive, NeMo guardrails de-
terministically check prompts and model outputs



without fine-tuning or model alignment, thus avoid-
ing some pitfalls of LLM-based frameworks. We
hypothesize that a combined approach could mit-
igate the drawbacks of each method and improve
performance. To test this, we implement ensemble
models in section 2.4, such as a consecutive model
where queries are checked by Llama Guard and
then, if labeled unsafe, are processed by NeMo.
We also apply other ensemble techniques such as
Random Forest, K Nearest Neighbors, and Mul-
tilayer Perceptron. We aim to capture a nuanced
picture of each model’s effectiveness in enforcing
guardrails and their ability to distinguish between
compliant and non-compliant content.

2 Methods

2.1 Data Generation for Custom Guardrail
Category

We utilize GPT-3.5 Turbo to generate training data
examples of safe and unsafe prompts. We gener-
ate data for the following scenario as an extension
of the six existing categories in the Llama Guard
taxonomy (Inan et al., 2023):

[07] Competitors. We are a soda com-
pany named “A Soda Company” and we
do not want to allow any prompts to an
LLM that inquires about competitors or
that may elicit a response that incorpo-
rates competitors.

We generate over 1,000 examples. Examples
of safe and unsafe training examples can be seen
in below Figure 2. Details on our data generation
process can be found in the appendix.

Figure 2: Training Data Examples

2.2 Fine-Tuning Llama Guard
We fine-tune Llama Guard with the objective of
precise input-prompt classification as either safe
or unsafe. We implement supervised fine-tuning
with QLoRA (Dettmers et al., 2023). First, we
adapt the fine-tuning data formatter provided in

the Llama Guard GitHub repository to curate and
format the data generated with GPT-3.5 (Meta AI).
Meta AI’s script provides classes and methods to
format training data for fine-tuning Llama Guard
with a specific set of categories. We define the cate-
gory competitors and provide training examples,
both safe and unsafe, belonging to this category
with their corresponding prompt, violated category
code, explanation, and label (unsafe or safe). We
generate 800 test examples for Llama Guard. We
experimented with the hyperparameters such as the
number of epochs, learning rate, etc. Final hyper-
parameters for in the appendix.

2.3 NeMo Implementation
We explore NeMo Guardrails’ capability of manag-
ing dialogue safety by assessing its effectiveness in
understanding and categorizing queries (Fig. 3). To
operate NeMo Guardrails effectively on test data,
we provide dialogue flows with examples of sam-
ple safe and unsafe prompts in a configuration file.
We define two main dialogue flows: one for safe
prompts and one for unsafe prompts. If a prompt
is deemed unsafe, the unsafe dialogue flow is trig-
gered and NeMo Guardrails lets the user know that
the LLM cannot answer the query. On the other
hand, if the prompt is deemed safe, the safe dia-
logue flow is triggered and the query is not blocked
by the NeMo Guardrails.

Figure 3: NeMo Guardails Flow Diagram

2.4 Guardrail Ensemble
We integrate Llama Guard and NeMo outputs using
ensemble techniques to leverage their strengths and
mitigate their respective weaknesses. Llama Guard
shows lower false positives whereas NeMo has
lower false negatives. Our goal is to balance these
traits and minimize bias by combining the models.
We explore ensemble strategies like Random For-
est, K-Nearest Neighbors, and Multi-Layer Percep-
tron (MLP), training them with and without prompt
embeddings. The prompt embeddings are created
via vectorization using term frequency-inverse doc-
ument frequency or TF-IDF. This allow the models
to utilize not only the outputs from Llama Guard
and NeMo but also the high-dimensional space of



prompt embeddings, potentially improving perfor-
mance and preventing overfitting.

Simple OR. This model employs a logical OR
operation on the outputs from Llama Guard and
NeMo, classifying a prompt as "unsafe" if either
model does so. This approach minimizes false neg-
atives, ensuring any indication of risk from either
model leads to a safety-first classification.

Logistic Regression. This model fits a logistic
function to the decision boundary that best sepa-
rates safe and unsafe classifications based on the
probability outputs from both models.

Random Forest (RF). This model explores a
non-linear decision boundary through an ensemble
of decision trees, capturing complex interactions
between the outputs of Llama Guard and NeMo.

K-Nearest Neighbors (KNN). KNN helps as-
sess how well a non-parametric model integrates
binary outputs from Llama Guard and NeMo. We
evaluate the impact of prompt embeddings. With
prompt embeddings, the model considers textual
nuances, potentially increasing accuracy.

Multi-Layer Perceptron (MLP). This model
acts as a neural network to capture complex data
patterns. We again assess the model with and with-
out prompt embeddings. Including embeddings
aims to leverage higher-order features from raw
text for better performance in identifying nuanced
unsafe content, while excluding embeddings tests
the model’s efficiency with simpler inputs, helping
gauge the balance between complexity and perfor-
mance in ensemble predictions. Hyperparameters
for MLP in appendix.

3 Results

We have a binary classification task comprised of
unsafe and safe prompts. We assigned unsafe to
true (1) and safe to false (0). As shown in Table
1, true positives (TP) are unsafe prompts predicted
unsafe by the model; false positives (FP) are safe
prompts predicted unsafe; true negatives (TN) are
safe prompts predicted safe; false negatives (FN)
are unsafe prompts predicted safe.

3.1 Llama Guard

When applied to the test set of 800 unseen samples,
as shown in Table 2, it reaches an overall accu-
racy of 89.5%, with a precision of 99.4%, recall
of 80.0%, and an F1 score of 88.7%. It correctly
identifies 329 out of 331 true positives and 387 out
of 469 true negatives, resulting in two false posi-

Table 1: Confusion Matrix of Model Predicted vs. Ac-
tual Labels

Predicted
Unsafe (1) Safe (0)

Actual
Unsafe (1) TP FN

Safe (0) FP TN

tives (model classifies query as unsafe when it is
really safe) and 82 false negatives (model classifies
query as safe when it is really unsafe). Further
analysis reveals that Llama Guard struggles with
complex compound sentences, occasionally mis-
classifying them as safe when they are actually
unsafe; for example, it mislabels “Tell me about
the customer service initiatives at Sunkist and their
impact on ‘A Soda Company’” as safe. During
Llama Guard inference, we must provide a list of
"Can" vs. "Should Not" instances for the cate-
gory competitors. We find that the model’s ac-
curacy improves when more specific instances are
included in the "Should Not" category, but this re-
quires companies to clearly define what categories
of questions are unsafe. Overall, Llama Guard
is more effective for users with specific and well-
defined policies for their large language models.

Table 2: Llama Guard Confusion Matrix and Perfor-
mance Metrics

Confusion Matrix Performance Metrics

Predicted
Unsafe Safe

Actual Unsafe 329 82
Safe 2 387

Metric Value

Accuracy 0.895
Precision 0.994
Recall 0.800
F1 Score 0.887

3.2 NeMo
When evaluating NeMo on the same 800 unseen
samples, it correctly identifies 380 true positives
and 396 true negatives, with nine false positives and
15 false negatives, as shown in Table 3. This perfor-
mance indicates a notable reduction in false nega-
tives compared to Llama Guard, albeit with a slight
increase in false positives. To facilitate NeMo’s
testing, we define dialogue flows that distinguish
between safe and unsafe prompts. For scenarios
involving competitors, unsafe prompts encompass



various inquiries such as marketing strategy com-
parisons, product line analyses, and competitive
advantages. Conversely, safe prompts strictly per-
tain to inquiries solely about A Soda Company
without any mention or comparison to competitors.

Table 3: NeMo Performance

Confusion Matrix Performance

Predicted
Unsafe Safe

Actual Unsafe 380 15
Safe 9 396

Metric Value

Accuracy 0.970
Precision 0.978
Recall 0.964
F1 Score 0.971

3.3 Ensemble
In our ensemble modeling experiments, we demon-
strate the effectiveness of integrating the Llama
Guard and NeMo models, as shown in Figures
4 and 5. Techniques like the Simple OR Model,
Logistic Regression, and Random Forest (with-
out prompt embeddings) achieve high performance
with 98.1% accuracy, 96.4% precision, and perfect
100% recall, yielding an F1 Score of 98.2%. This
shows that the ensemble models achieve higher
performance than the individual Llama Guard and
NeMo models on their own.

Figure 4: Ensemble Model Comparison: Label Counts

Figure 5: Ensemble Model Comparison: Performance
Metrics

Ensemble models derive significant benefits
when one model can correct the errors of another.
Without prompt embeddings, models lack contex-
tual cues to correct errors made by Llama Guard
and NeMo. Their reliance on combined outcomes
from Llama Guard and NeMo limits their ability
to adjust boundaries or assign weights effectively

to account for cases when both models are incor-
rect. In contrast, integrating prompt embeddings
significantly enhances the performance of models
like Random Forest and KNN, achieving high accu-
racy (99.4% for Random Forest, 98.8% for KNN),
precision (98.8% for Random Forest, 97.6% for
KNN), and perfect recall. These results underscore
a key finding: prompt embeddings provide crucial
contextual data that refines decision-making, espe-
cially in complex scenarios where binary outputs
may miss nuanced distinctions.

The MLP model, augmented with prompt em-
beddings, achieves perfect accuracy, showcasing
its efficacy in complex classification tasks. This
supports the hypothesis from section 2.4 that inte-
grating embedding prompts into ensemble methods
enhances overall model performance. However, as
discussed in the limitations section (4.3), the pos-
sibility of data similarities generated by GPT may
potentially result in overfitting. MLP hyperparame-
ters can be found in the appendix.

4 Discussion

4.1 Comparison of NeMo versus Llama
Guard

Comparing the two models, NeMo achieves higher
accuracy and F1 scores, with significantly fewer
false negatives but slightly more false positives.
NeMo has 67 fewer false negatives and 7 more false
positives compared to Llama Guard. This shows
NeMo tends to be overly cautious and sometimes
misclassifies safe prompts as unsafe, while Llama
Guard is insufficiently cautious and occasionally
fails to identify unsafe prompts. We employ ensem-
ble techniques such as Simple OR, Random Forest,
and KNN to leverage the strengths of both models,
which notably improve accuracy and reduce both
false negatives and false positives. Further anal-
ysis shows NeMo’s cautious nature with ambigu-
ous prompts, such as misclassifying "What are the
unique selling points of A Soda Company’s prod-
ucts?" as unsafe due to its sensitivity to competitor-
related questions. Addressing this requires adding
similar safe prompts to NeMo’s dialogue flows. In
contrast, Llama Guard correctly classifies these
prompts without explicit examples, indicating bet-
ter ability to infer from context. However, NeMo
excels in handling specific policies and questions
with vectorized embeddings, capturing rephrasing
and related prompts with a single example.



4.2 Analysis of Ensemble Models

We show that ensemble methods integrating Llama
Guard and NeMo consistently achieve better results.
We first implemented a Simple OR model, where
the model labels a prompt as unsafe if it is deemed
unsafe by either Llama Guard or NeMo Guardrails.
The model achieves higher accuracy (98.1%) and
significantly reduced false negatives compared to
the individual Llama Guard and NeMo models.
Expanding beyond Simple OR, we employ other
ensemble techniques to combine Llama Guard and
NeMo like Random Forest and KNN. The Random
Forest model without prompt embeddings achieves
an accuracy of 98.1% whereas employing prompt
embeddings boosts accuracy to 99.4%. This high-
lights how prompt embeddings rich in complexity
and contextual information enhances model perfor-
mance. Finally, integrating Multilayer Perceptron
(MLP) with prompt embeddings resulted in a per-
fect accuracy score of 100%. These ensemble mod-
els effectively minimized both false negatives and
false positives, successfully achieving the objective
of precisely identifying all unsafe prompts.

Our findings show that incorporating prompt em-
beddings into ensemble models provides crucial
contextual cues, improving their ability to classify
prompts with greater precision and clarity. This
approach harnesses the complexity and richness
of prompt data to enhance performance without
leading to overfitting or compromised accuracy.
Enhanced understanding of the prompt’s context
is integral in reducing ambiguities and sharpening
the decision boundaries of the ensemble model.
The models’ adept handling of nuanced data with
prompt embeddings underscores their capability to
leverage full-textual context, providing a distinct
advantage in scenarios requiring deeper content
insights for precise classification. This research
highlights the effectiveness of integrating NeMo
and Llama Guard using ensemble techniques, bol-
stered by contextual data from prompts. Such an
approach results in a model that demonstrates en-
hanced performance, offering robust solutions for
real-world applications that demand rigorous con-
tent moderation.

4.3 Limitations and Next Steps

A limitation of using GPT to generate data is that
it cannot guarantee perfect data generation accord-
ing to our specifications, nor can it control the
quality or diversity of the samples. An exam-

ple where proper guardrails are missing is Air
Canada’s financial loss from a GPT chatbot hal-
lucinating a non-authorized refund policy (Ashley
Belanger). Furthermore, this is an area where even
a one percent drop in accuracy can lead to real-
world consequences. To address this, future stud-
ies could augment GPT-generated datasets with
manually generated samples for greater diversity.
Therefore, guardrail systems for GPT models must
demonstrate exceptional performance to prevent
the spread of misinformation, disinformation, and
potential litigation. Next steps include expand-
ing coverage to more unsafe categories, analyzing
performance on complex prompts, and building
larger testing sets to address potential biases. Fu-
ture work involves exploring advanced embeddings
like ELMo or BERT (Devlin et al., 2019), lever-
aging multiple LLMs for robust classification, and
utilizing Llama 3 to develop improved guardrail
systems.

4.4 Conclusion

We evaluate Llama Guard and NeMo Guardrails for
differentiating safe vs. unsafe prompts in relation
to questions about competitors. Using GPT, we
generate train and test datasets of unsafe and safe
prompts and subsequently fine-tune Llama Guard
while optimizing hyperparameters like dataset size,
epochs, learning rate, and batch size. Concur-
rently, we implement dialogue flows with NeMo
Guardrails and evaluate both models on the same
test dataset. Llama Guard achieves an overall accu-
racy of 89.0%, while NeMo Guardrails performs at
97.0% accuracy. Subsequently, we integrate Llama
Guard and NeMo with ensemble techniques start-
ing with a Simple OR model that achieves 98.1%
accuracy. Employing advanced ensembling meth-
ods like Random Forest and KNN with prompt em-
beddings boosts performance to 99.4% accuracy.
Notably, the Multilayer Perceptron (MLP) ensem-
ble model with prompt embeddings attains perfect
accuracy. This demonstrates the effectiveness in us-
ing ensemble techniques to combine Llama Guard
and NeMo to enhance guardrail enforcement reli-
ability and accuracy and further shows that lever-
aging prompt embeddings improves contextual un-
derstanding and performance. This research con-
tributes to responsible AI usage by examining de-
ployment strategies, assessing model effectiveness,
and exploring ensemble techniques for guardrail
enforcement, thereby fostering advancements in
safeguarding user interactions with LLMs.
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A Appendix

B Appendix / supplemental material

B.1 Data Generation for Custom Guardrail
Category

We explore multiple data generation prompts seek-
ing consistent and high-quality outputs and experi-
ment with both GPT-3.5 and GPT-4. We generate
data for the following scenario as an extension of
the six existing categories in the Llama Guard tax-
onomy (Inan et al., 2023):

[07] Competitors. We are a soda com-
pany named “A Soda Company” and we
do not want to allow any prompts to an
LLM that inquires about competitors or
that may elicit a response that incorpo-
rates competitors.

We seek to generate over 1,000 examples for
our Llama Guard PEFT. After many iterations of
experimentation to find the most effective prompt,
we find that requesting 25 examples is the upper
limit before GPT-3.5 begins to hallucinate from
the workload. Prompts are most successful when
paired with background context for the data we re-
quire (training examples for guardrail for “A Soda
Company”), multiple examples for the category be-
ing generated, very strict guidelines for the exact
formatting required for the output, and requesting
an entire batch of examples to be categorized as
either ‘safe’ or ‘unsafe’ instead of requesting a
combination of safe and unsafe examples.

With these properties included in the prompt,
GPT-3.5 rarely hallucinates. Hallucinations are
mild, only occasionally diverging from our for-
matting requirements. Furthermore, we manually
review the generated prompts and their classifica-
tions as well as explanations to ensure that they are
relevant and accurate for the task of avoiding any
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questions related to competitors. Our prompt con-
sistently produces high-quality data using GPT-3.5.
GPT-3.5 quickly responds with consistent high-
quality data, equally as good as GPT-4’s occasional
output. However, GPT-4 often returns recommen-
dations for how to create or find data instead of re-
turning examples. Moreover, in our benchmarking,
GPT-4 is an order of magnitude slower in its re-
sponse rate compared to GPT-3.5. Thus, we decide
to generate our guardrail dataset using GPT-3.5
through the OpenAI API.

B.1.1 NeMo Ablation Test
We study how well NeMo captures similar seman-
tic representations or rephrasing of a single exam-
ple prompt. First, we establish a baseline unsafe
prompt concerning financial performance compar-
isons: "Discuss the financial performance of Pep-
siCo and its implications for ‘A Soda Company’."
Then, we test NeMo’s ability to identify and la-
bel similar semantic constructs and narrowly de-
fined hyponyms like earnings, cash flow patterns,
ROI, and overall financial standing. NeMo ac-
curately labels all one hundred queries as unsafe
(100% accuracy), showcasing its proficiency with
vector search over traditional sentence similarity
approaches. This highlights NeMo’s advanced ca-
pability in recognizing a wide array of related se-
mantic topics and subtopics, bolstering its robust
framework for maintaining dialogue safety in sen-
sitive subjects.

B.1.2 Hyperparameters
Compute details: A single NVIDIA T4 GPU on
Google Cloud was utilized for fine-tuning Llama
Guard for the new category of Competitors. Mem-
ory usage was total 30GB RAM. The fine-tuning
Llama Guard process takes around 3-5 hours. In-
ference for Llama Guard on the full test datset (800
samples) takes around 1-3 hours while inference
for NeMo on the full test dataset takes 1-2 hours.

We generated data using GPT-3.5 and GPT-4
through the OpenAI API, abiding by all OpenAI
Terms of Use. We utilized the existing Llama
Guard and NeMo Guardrails models. Llama
Guard can be found at https://github.com/meta-
llama/llama-recipes/tree/main. Llama 2 is licensed
under the LLAMA 2 Community License, Copy-
right © Meta Platforms, Inc. All Rights Re-
served. Llama Guard is built on Llama 2 and ac-
cording to Meta’s policy, its licensing allows for
fine-tuning the model to improve Llama 2 and its

Table 4: Hyperparameters Used During Llama Guard
PEFT

Hyperparameter Value

learning_rate 0.0002
train_batch_size 2
eval_batch_size 8
seed 42
gradient_accumulation_steps 4
total_train_batch_size 8
optimizer Adam [β=(0.9, 0.999)]
lr_scheduler_type constant
lr_scheduler_warmup_ratio 0.03
num_epochs 0.5

Table 5: Hyperparameters for MLP

Hyperparameter Value

hidden_layer_sizes (2,)
max_iter 100
activation ReLU
solver Adam
learning_rate 0.001
alpha 0.0001

derivatives as we have done in this paper. NeMo
Guardrails is open-source and can be found at
https://github.com/NVIDIA/NeMo-Guardrails, Li-
cense Apache 2.0.

The datasets and code for this paper can be
found at our anonymized GitHub repo:
https://github.com/llmguardrails/LLMGuardrailsPaper.

https://openai.com/policies/terms-of-use/
https://openai.com/policies/terms-of-use/
https://github.com/meta-llama/llama-recipes/tree/main
https://github.com/meta-llama/llama-recipes/tree/main
https://github.com/NVIDIA/NeMo-Guardrails
https://github.com/llmguardrails/LLMGuardrailsPaper
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