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ABSTRACT 

Modern psychiatry struggles to reconcile the diagnostic heterogeneity that pervades 

psychopathologies, including Bipolar Disorder (BD). BD presents on the affective spectrum, 

oscillating between manic highs and depressive lows. Individuals with varying severity of mania 

are differentiated by different subtypes of BD (type 1 and 2). However, there is still a substantial 

amount of diagnostic heterogeneity in any one sub-diagnosis that previous studies have not 

sufficiently accounted for. For example, sub-diagnoses of BD fail to differentiate the psychotic 

features that often present alongside affective symptoms. A more nuanced understanding of the 

distinct biological underpinnings of BD could transform the health outcomes for those battling 

BD by way of objective susceptibility measures, more concrete diagnoses, and improved 

treatment planning. Genome-wide association studies (GWAS) are a powerful method for 

localizing single nucleotide polymorphisms (SNPs) that may be associated with phenotypes of 

interest. Family-based transmission disequilibrium tests (TDT) are a unique approach to GWAS 

because they are robust to false-positive findings due to the effects of population stratification. 

Using rich phenotypic data from previously gathered family studies alongside recently generated 

SNP data, we set out to investigate associations among individuals with type 1 (severe) BD 

(BD1), comparing subjects who comorbidly exhibit psychotic features (BD1-P) to subjects 

whose presentations of BD lack any psychotic features (BD1-NP). We have found a cluster of 

SNPs on 6q25.3 with p-values of approximately 2.0x10-6 among the BD1-NP cohort that are 

suggestive of findings. Lack of any significant findings at the same locus among BD1-P 

individuals, and an intermediate level of signal in a mixed group strengthen our findings and 

demonstrate the striking heterogeneity that pervades the current classification system. Future 

work will involve aggregating case-control samples and conducting a joint case-control/family 

association study to further assess the significance of our current findings. Additionally, we hope 

to continue to distinguish nuanced associations between the human genome and symptoms of 

psychopathology. 
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Challenges Posed by Psychiatric Disorders 
Prevalence of Psychiatric Disorders 

Psychiatric disorders are a major burden on public health and the global economy1. A 

decade ago, Merikangas et al. found that nearly 1 in 5 U.S. adults will experience living with a 

mental illness, and that figure still holds today2,3. Since then, certain subgroups within the 

population have been found to have an even higher prevalence of psychiatric disorders3. For 

example, Bruffaerts et al. [2019] has shown that there is a 31.4% likelihood for first year college 

students to experience mental disorders that can last 12-months, based on a study that tracked 

nearly 14,000 first-year college students4. These striking figures point to an overwhelming need 

for stronger diagnostic criteria, better preventative measures, and more effective treatments for 

the whole gamut of existing neuropsychiatric disorders. Several promising novel avenues of 

research for quantifying variation in the brain and genome have emerged in recent decades; 

however, few of these studies have actually translated into meaningful health outcome 

improvements5. Due to the extremely complicated architecture and physiology of the human 

mind, modern psychiatry has not been able to follow the increased pace of advancements that 

occur within many other medical fields6. 

Clinical Barriers in Psychiatry 
Psychiatric help, often in the form of pharmacological intervention, can greatly improve 

the quality of life for a large proportion of patients struggling with their mental health7. However, 

psychiatrists face a unique set of challenges that impact their ability to care for their patients. 

For all clinicians, symptomatology is necessary in order to create a framework of terminology 

through which a patient can be diagnosed and subsequently treated. However, many psychiatric 

disorders contain overlapping symptoms under the current classification system. This means 

that psychiatric diagnoses are prone to diagnostic heterogeneity, which creates difficulties for 

clinicians in pinpointing any given patient’s exact illness. For example, two patients with the 

same diagnosis will often exhibit different clinical features while two patients with different 
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diagnoses may exhibit the same clinical features. This not only makes it a challenge to keep 

diagnoses objective, but it also impacts the efficacy of existing therapeutic treatments7. 

Furthermore, the entire process of moving from diagnosis to selecting a treatment to maximizing 

the efficacy of a treatment contains much subjectivity and uncertainty in psychiatry7. To a large 

extent, this is because of a lack of understanding about most of the biological underpinnings of 

psychopathologies. Unlike many other areas of medicine—where a diagnosis implies a specific, 

identifiable etiology that underlies the pathophysiology—psychiatric nosology focuses primarily 

on symptoms7. 

Genetic Barriers to Psychiatric Research 
The clinical barriers in psychiatric genetics can be diminished with a more complete 

understanding of the neurophysiology, which––at its core––arises from sets of genes that inform 

neural development. In other fields of modern medicine with comparatively less complex organ 

systems, the link between genetics and disease is often very clear. In fact, the advancements 

made in other fields have been paving the way for a future of “precision medicine”, where care 

is tailored to a person’s unique genetic makeup. Research in the genetics underlying psychiatric 

disorders is held back in comparison to other fields due to the scarcity of identifiable biomarkers 

that have been discovered to date8,9. 

Difficulty identifying biomarkers can be attributed to the notable influence of 

environmental factors on the mental state10. A major model of etiology and risk for psychiatric 

disorders is founded on the idea that a highly polygenic interplay of multiple genes, on many 

different chromosomes, all contribute to a person’s overall susceptibility11. Hence, there is no 

one gene or small group of genes that directly causes psychiatric disorders. Thus, most of the 

relevant molecular pathways for psychiatric disorders are unknown to this day. Furthermore, 

whether one actually manifests a psychiatric disorder is often dependent on or aggravated by 

environmental factors such as trauma or substance abuse12,13. Thus, since it is possible for 

individuals to have a sufficient genetic susceptibility for a particular disorder but not manifest it, 
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psychiatric disorders are fraught with low penetrance (the proportion of individuals who carry 

genetic risk for a disease and actually express the disease)14. The simultaneous interplay of 

these nuances increases the difficulty of obtaining meaningful findings when conducting genetic 

analyses on psychiatric disorders. 

Locating Genes Associated with Disease 
Identifying Sources of Genetic Variation in Humans 

Although the human genome contains billions of base pairs, there is shockingly little 

variation in gene sequence from person to person. In fact, all humans are over 99.8% identical 

by genetic makeup15. However, the uniqueness of each individual’s traits with but a 0.2% 

margin of variation from person to person can be explained by the fact that there are over three 

billion base pairs in the human genome. These variations come in different forms; one of the 

most commonly investigated is the single nucleotide polymorphism (SNP).  

SNPs are nucleotide positions in the genome at which different members of a population 

express different alleles; that is, they are sites containing polymorphic alleles15. Millions of SNPs 

exist in the genetic architecture of humans because evolution is driven by a stochastic process, 

where, occasionally, a nucleotide spontaneously mutates16. Pathogenic variants tend to 

decrease the fitness of affected individuals and thus appear at too low a frequency relative to 

the population as a whole (less than 1%) to count as polymorphic alleles. In contrast, SNP 

variants tend to not have perceivable effects on the probands (the individual who serves as the 

starting point for a genetic study) in which they first appear. Although pathogenic variants are 

what is truly of interest to investigators, the identification of SNPs that are associated with a 

disease trait is a much more practical and tangible endeavor. 

Assuming an individual has progeny, disease generating alleles may be transmitted to 

some of the progeny descended from him/her. Furthermore, not only are these changes 

transmitted, but, due to linkage disequilibrium, adjacent SNPs will tend to segregate along with 
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the nearby mutation. Thus, the association of specific SNPs with a disease of interest can 

greatly narrow down the localization of the disease-causing mutation(s). 

Although the locations of several million SNPs are known, localizing the genes that 

contribute to the development of diseases in humans is a sizable, yet critical, task. An increased 

understanding of a psychopathology’s susceptibility variants has the potential to enable 

clinicians to objectively reach diagnoses and accordingly utilize targeted therapeutics in the 

treatment process. Furthermore, such findings would allow for better prophylactic treatments 

and preventative measures to be taken to reduce exposure to potential environmental triggers in 

individuals who carry a genetic risk burden. 

Linkage Studies: Locating Linkage Peaks Associated with Pathologies 
Over the past few decades, researchers have conducted several analyses which have 

identified several loci that confer risk for schizophrenia and affective disorders17-22. Linkage 

studies depend on large blocks of DNA that recombine and are inherited together during 

meiosis. Linkage peaks identify large regions on any particular chromosome of potential 

relationship with a phenotype of interest. Association studies, to be discussed in the next 

section, are aptly suited to narrow in on the numerous specific susceptibility-bearing loci of 

complex disorders23. Additionally, association studies can compare cases and controls from 

individuals who appear unrelated because SNPs unify genetic ancestry among individuals who 

are likely not even aware of their distant relationships. However, as whole-genome sequencing 

is becoming more accessible and is trending towards no longer being prohibitively expensive, 

linkage studies will again be used widely to identify disease-causing genes24. 

GWAS: Locating SNPs Associated with Pathologies 
A genome-wide association study (GWAS or GWA study) is a method used by 

researchers to pinpoint the specific locations of disease-causing variants25,26. Researchers 

conducting a GWA study can leverage the facts that (1) SNPs occur throughout the genome 

and (2) are often found adjacent to or within genes that are causative for the manifestation of 
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diseases in order to locate disease-causing genes27. Specifically, in a GWA study, investigators 

will genotype affected and unaffected (control) samples at hundreds of thousands to several 

million SNPs and will then statistically determine which SNPs tend to be inherited more 

frequently by symptomatic individuals than by asymptomatic controls28. Through the 

identification of particular variants that appear overrepresented among an affected population in 

comparison to unaffected controls, investigators are able to vastly narrow down the probable 

loci of causative genes through GWA studies23. 

Case-Control Association Studies 
When conducting an association case-control studies, it is common to combine datasets 

of individuals from highly diverse populations. However, the heterogeneity present in the 

frequencies of alleles between individuals of different ethnic origins should never be 

disregarded29. Certain factors have caused variant frequencies to differ between populations 

over time. A primary factor includes differences in the de novo mutations that have occurred 

among common ancestors long ago. Other factors include population drift, or a bottleneck or 

founder effect––all circumstances that alter the gene pool of a population––that cause the 

frequency of alleles to differ in different populations30. 

If the genetic profile of cases is not matched carefully to controls, the population 

stratification within the sample space would result in several false-positive associations23,31,32. 

Population stratification is the phenomenon whereby differences in population’s underlying allele 

requires the stratification of multi-ethnic genetic data sets in order to minimize false positive 

findings. For example, lactose intolerance might be wrongly associated with a disease simply 

because some populations actively produce lactase enzyme (and thus have varying allele 

frequencies at the loci that encode lactase), whereas others do not. Thus, in order to not 

disregard the heterogeneity between the datasets, statistical techniques such as principal 

components analysis (PCA) can be employed to ensure that cases are matched well with their 

controls17,33. 
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Family-Based Association Studies 
Alternatively, family-based studies for association are entirely robust to within-family 

population stratification32,34. Family-based studies work with “trios”, two parents and their 

offspring, as opposed to matching a case with an unrelated control35. The two alleles at each 

genetic locus in the kin is compared to the four alleles of parental DNA (two from each parent); 

at each locus, the two parental alleles that were not transmitted to the child serve as control 

alleles. In family-based association studies, the allele frequencies of populations of case and 

control alleles are perfectly matched because the ethnic background of both parents most 

closely matches that of their child. However, family trios are more difficult to recruit than 

unrelated individuals. Additionally, part of the genetic information among trios is used as control 

information, when it could otherwise serve as valuable case information in a case-control study. 

Once phenotypes are assigned to individuals, a transmission disequilibrium test (TDT) can be 

implemented to calculate p-values of association for every SNP within family-based datasets. 

The TDT is an application of MacNemar’s test that compares the proportions of two 

dichotomous variables (in this case, transmitted and untransmitted alleles). The TDT statistic is 

calculated as: 

(" − $)!
(" + $)  

where a is equal to the number of transmitted alleles and b is equal to the number of 

untransmitted alleles. Under the null hypothesis, the TDT follows a chi-squared distribution with 

one degree of freedom. 

Practical Considerations for GWA Studies 
Since GWAS is accomplished by aggregating and comparing information about 

hundreds of thousands to millions of SNPs in the genome, a multiple-testing correction to the p-

value will need to be addressed36. Additionally, the ethical implications that arise in the form of 

healthcare disparities down the pipeline from the initial GWASs will also be addressed37. 
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One of the primary difficulties in conducting GWA studies is achieving sufficient 

statistical power. A large pool of samples is required in order to minimize the effects of false 

positives and obtain significant results38,39. The difficulty exists primarily in amassing and 

analyzing both phenotypic and genotypic data of a large sample size of study participants; it is 

incredibly labor intensive, time consuming, and expensive. However, although they may be 

difficult to orchestrate, GWA studies are particularly important for the investigation of disorders 

and are a worthwhile economic investment for the future of healthcare. 

GWA Studies for Psychiatric Genetics 
The introduction of GWAS as a method for investigators to better understand polygenic 

traits invigorated the scientific community of the late-1990s and 2000s40. Over the past thirteen 

years, more than 1,200 SNPs were found––with genome-wide significance––to be associated 

with psychopathologies41. In more recent years, progress in psychiatric genetics has slowed42. 

In order to keep the momentum of this line of research steady, more nuances––that is, 

associations between specific symptoms and SNPs––should be discerned, until whole genome 

sequencing of several study participants is no longer be prohibitively expensive and new tools 

will yield even finer genetic resolution24. 

Current Efforts in Psychiatric Genetics 
Polygenic Risk Scoring 

Building off of GWA studies, a relatively recent step forward in genetics has been the 

application of current knowledge of human susceptibility variants, with varying levels of effect 

sizes, toward establishing polygenic risk scores (PRS). PRS is a metric that builds off of GWAS 

data and adds the weighted effects of all of the identified genetic variants to produce a score 

that is predictive of latent risk for many phenotypes of interest8,43. Unlike many of the well-

characterized maladies that have genetic influences, psychiatric disorders are known to be 

highly polygenic, with hundreds or thousands of variant genes that cumulatively contribute to a 
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disordered phenotype44. Thus, PRS is a metric that points toward striking progress in the 

characterization of the genetic risk liability for individuals with psychiatric disorders45. 

Strengthening Diagnostic Criteria 
The emerging realization is that a more dimensional approach to the characterization of 

phenotypes would profoundly improve research efforts in psychiatric genetics6,46. Not only would 

it improve our understanding of the biology that underlies such complex phenotypes, but by 

incorporating the biology as a dimension of a larger system, it would also help with the 

translation of such findings into better health outcomes for the individuals that this research has 

always sought to help. 

NIMH’s Research Domain Criteria (RDoC) is one such framework that approaches 

psychiatric symptomatology in a new light. RDoC breaks the status quo of considering only 

traditional, subjective symptoms; instead, it focuses on a wider range of data from the whole 

gamut of academic research in neuroscience, from genetic markers to neurocircuits to self-

reports from affected patients47. This framework elegantly integrates several levels of analysis 

into a dimensional model for the modern reclassification of psychiatric disorders. By doing so, 

rather than solely considering the subjective and non-absolute diagnoses that clinicians garner 

from their patients, RDoC is superior to traditional methods because it accounts for the wildly 

varying individual experiences in the realm of psychopathology47. Using a dimensional 

framework for the classification of psychiatric disorders may enable researchers to identify more 

nuances in the science that drives the manifestation of psychiatric disorders. Significant results 

from geneticists that are able to discover the genetic component of psychopathologies would 

vastly improve the utility of a framework such as RDoC in clinical practice. 

Data Sharing and Meta-Analyses 
Achieving finer detail of the genetics at the root of psychopathologies requires a great 

deal of collaboration. In order to amass substantial amounts of phenotypic and genotypic data, it 

is imperative that the psychiatric genetics community work together; for this reason, data-
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sharing is becoming standard practice in the field17. Given the challenges involved in gathering 

clinical information and genetic data, the sharing of datasets affords researchers cost-effective 

ways to conduct their analyses. It also allows for meta-analyses to be applied to a larger dataset 

than any one study might be able to carry out. Examples of this include the Psychiatric 

Genomics Consortium (PGC), which combined data from several independent studies to 

perform highly significant meta-GWA studies48. As a direct result of this, in 2018, 44 new risk 

variants were determined to be associated with major depression49.  Another group looked at 

PGC data in the schizophrenia collection and found specific genes (and even point some 

theories towards potential pathways) that have a strong association with susceptibility for the 

manifestation of schizophrenia50. Over 100 new variants were identified in another meta-

analysis on nearly 500,000 individuals in data collections for neuroticism studies, highlighting 

the strength of data sharing in this field51. Finally, PGC found 30 new loci implicated in 

connection to bipolar disorder in 201952. 

NIMH Repository for Psychiatric Genetics 
In order to confront the logistical obstacles related to the aggregation, curation, and 

harmonization of shared data, the National Institute of Mental Health (NIMH) has dedicated 

funding and resources toward the active maintenance of a repository of more than two hundred 

thousand patient and control samples53. The NIMH Repository and Genomics Resource 

(NRGR) is a centralized location for both the storage and distribution of biosamples and data 

curation of corresponding phenotypic data related to psychiatric studies. The NRGR’s wide 

array of biosamples includes DNA, RNA, immortalized cell lines, and induced pluripotent stem 

cells (iPSCs), from subjects who collectively exhibit a wide range of psychiatric disorders, as 

well as unaffected controls53. The NRGR actively makes high-quality clinical phenotypic data as 

well as biological samples of patients and controls available to investigators globally to enable 

high-powered research in psychiatric genetics. Datasets such as those that comprise the PGC, 

and a plethora of others that were constructed for the studies that were conducted over the past 
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30 years can be requested and studied by qualified investigators. At this point in time, over a 

thousand publications cited the NRGR as having contributed to their results. 

A Dimensional Symptom Classification Approach 
Overview 

Modern psychiatry struggles to deal with the diagnostic heterogeneity that pervades 

psychopathologies, including Bipolar Disorder (BD). BD is characterized by oscillations of mood 

from manic highs to depressive lows and is a spectrum disorder with a clinical presentation that 

varies greatly in the population. BD is unique in that such variations in clinical presentation tend 

to bridge together the complexities of mood disorders with canonical symptoms of thought 

disorders such as psychosis, including delusions and hallucinations.  

While BD has been studied extensively, not much is known about how it intersects with 

psychosis. A closer look at the genetic differences among individuals with BD and psychosis will 

pave the road to better understanding of both mood and thought disorders. 

Sample & Phenotype Availability 
Now, several years since phenotypic data were initially collected by various NIMH 

funded studies, Dr. Brzustowicz and her team at the NRGR are working on the Combined 

Analysis of Psychiatric Studies (CAPS) project. CAPS is an effort to direct resources toward 

maximizing already existing phenotypic and genotypic data, as opposed to disregarding 

previously collected data and launching brand-new studies––a time-consuming and costly 

task17,18. Dr. Brzustowicz’s group has aggregated DNA samples from several studies, 

genotyped the samples with a modern high-fidelity genotyping array, and deposited the resulting 

data in the NRGR’s data collections. At their core, the DNA samples that were originally 

collected haven’t changed; however, researchers can now analyze the genetic data, which were 

collected several years ago as parts of various independent studies, but only recently 

genotyped or re-genotyped using denser marker panels18. Densely packed SNP arrays with 

high call rates afford large quantities of genetic material with which to conduct association 
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studies. Similarly, phenotypic-level data has not changed since the subject interviews took place 

and can be utilized to reveal detailed insights into the complexities of each unique presentation 

of BD. 

Phenotypic information was gathered by various studies using the Diagnostic Interview 

for Genetic Studies (DIGS). The DIGS was developed by the NIMH Genetics Initiative to record 

information about a research subject’s psychopathology54. The DIGS enables qualified clinicians 

to reach diagnoses for subjects by way of thorough questioning about past and current episodes 

of psychiatric illness. Subject responses have been collected by various studies, many of which 

were retained by the NRGR for future use. 

Phenotypes of Interest 
BD is diagnosed by assessing for current or past mood episodes (mood symptoms that 

represent a change in normal functioning and occur over an extended period of time)55. Mood 

episodes include mania, and hypomania. Psychotic features, including delusions and either 

auditory or visual hallucinations, often present with mood episodes56. 

A major depressive episode is defined by five or more of the following symptoms 

occurring most of the day, nearly every day, for at least 2 weeks and represent a change in 

normal functioning: sadness (or irritability), loss of interest (anhedonia), guilt, energy, 

concentration, appetite, slowed psychomotor behavior, sleep (insomnia/hypersomnia), and 

suicidality57. At least one symptom needs to be depression (irritability) or loss of interest. 

Mania is defined as abnormally and persistently elevated or irritable mood, lasting at 

least one week (or any length of time if hospitalized)55. Symptoms include grandiosity or inflated 

self-esteem, being more talkative than usual or pressure to keep talking, decreased need for 

sleep, fleeting ideas or racing thoughts, an increase in goal-directed activity, and excessive 

involvement in pleasurable, and high-risk behavior55. The episode causes marked impairment in 

functioning, social activities or relationships with others, or necessitates hospitalization in order 

to prevent harm to self or others, or there are psychotic features55. 
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Hypomania, a less severe form of mania, is defined as a distinct period of persistently 

elevated, expansive or irritable mood, lasting throughout at least four days, and is clearly 

different from the usual non-depressed mood55. Symptoms can be same as manic, but the 

mood disturbance is not severe enough to cause significant impairment in social or occupational 

functioning and there are no psychotic features55. However, the change must be observable by 

others and uncharacteristic of the person55. 

Bipolar Disorder is diagnosed when one has shown or currently shows evidence of 

mania, hypomania, or a mixed episode. Bipolar Disorder, Type I (BD1) is defined by one or 

more manic episodes alongside one or more major depressive episodes55. Additionally, 

psychotic features are commonly present alongside BD155. Bipolar Disorder, Type II (BD2) is 

defined by one or more major depressive episodes with the presence or history of at least one 

hypomanic episode55. In such a case, there has never been a full-blown manic episode or mixed 

episode; otherwise, the diagnosis would be BD1. Cyclothymia is a related mood disorder in 

which the individual fluctuates between subthreshold depressive states and hypomanic states 

on a recurring basis55. 

Bipolar Disorder has a lifetime prevalence in the range of 1-4% in the American 

population11. It has an evenly split gender distribution, with an average age of onset just under 

2058,59. Treatments for bipolar depression include pharmacological intervention, family-focused 

therapy, and education of symptoms, triggers, and habits60. Thus, since education and pattern 

recognition are major parts of treatment for BD and mania, early awareness of susceptibility 

could help patients increase their preparedness toward any symptoms so that they can have 

more awareness of, and thus control, over their actions. Additionally, BD is a recurrent disorder 

in which subsequent episodes are seen in approximately 90% of people who have experienced 

a first episode59. For these reasons, early prediction of genetic susceptibility for such BD could 

become an essential and global component of medicine in the future. 
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Dimensional Classification of Phenotypes 
As previously mentioned, the PGC recently conducted a high-powered GWAS of BD that 

identified 30 novel loci associated with BD52. This was a high-powered case-control analysis, 

with over 50,000 cases and control participants. The reported loci are dispersed throughout the 

genome and are consistent with the polygenic nature of psychiatric disorders. In the publication, 

it is discussed that “Bipolar I disorder is strongly genetically correlated with schizophrenia, 

driven by psychosis, whereas bipolar II disorder is more strongly correlated with major 

depressive disorder.” However, in their analysis, PGC did not ultimately differentiate between 

BD1 subjects who comorbidly exhibit psychotic features from those who do not. In fact, we 

would like to draw attention to the possibility that BD1 without psychotic features (BD1-NP) may 

present a somewhat distinct genetic susceptibility profile from BD1 with psychotic features 

(BD1-P), which shares symptoms with schizophrenia and schizoaffective disorders. As such, a 

GWAS of BD1 that is further sub-classified to distinguish the presence or absence of psychotic 

features may reveal new insights into the ebb and flow from mania to depression that is 

characteristic of BD. Such a model may unveil findings that were previously hidden by the 

confounding factor of psychosis in the clinical presentations of just some study participants. We 

believe this will be the case even though the sample size, and thus the statistical power, of any 

one sub-classification will be less than the complete dataset. Among the 30 loci discovered by 

PGC in 2019, eight are also associated with schizophrenia, which may ultimately be accounted 

for by an analysis of BD1 with comorbid psychotic features. 

To the credit of the PGC, one of the reasons that this study did not sub-classify their 

BD1 individuals could be for a lack of sufficient phenotypic data. A difficulty in psychiatric 

genetics is that unlike in other fields, a diagnosis rarely conveys the full clinical picture of an 

individual and may be a limiting factor in many analyses that seek to dive deeper than a broad 

label will allow. As aforementioned, the CAPS dataset in the NRGR is an aggregation of families 

who, over the past 30 years, have been interviewed in detail about their psychiatric history.  
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From these CAPS families, we sought out to conduct a meta-analysis of individuals with 

Type 1 (severe) BD, comparing subjects who comorbidly exhibit psychotic features (BD1-P) with 

subjects whose presentations of BD1 lack any psychotic features (BD1-NP). Such a study could 

aid our understanding in the etiologies of BD, as well as other complex disorders. Ultimately, 

this study could contribute toward reaching better health outcomes for individuals battling BD, 

as well as, more broadly, to mood and thought disorders, as well. 

Significance 
A deeper understanding of the genetic susceptibility factors for nuanced presentations of 

BD would have several benefits. First and foremost, results could be applied to polygenic risk 

scoring algorithms and utilized in the assessment of a patient’s genetic risk burden for the 

manifestation of psychiatric disorders. Additionally, nuanced results could help the efforts of 

frameworks such as the RDoC, which are attempting to harmonize symptomatology with 

concrete genetic and biochemical data. RDoC aims to make the process of diagnosis and 

treatment selection in psychiatry less based on the subjective experience of the patient and 

more based on objective data; such an analysis aligns with this goal. Furthermore, such findings 

will ultimately help push forward the frontier in our understanding of the clinical heterogeneity 

with which BD presents and lends understanding to the unique pathophysiology of a specific 

subset of affected individuals. Finally, given that BD presents on a spectrum, with a variety of 

intersecting traits that are traditionally recognized as constituents of separate diagnoses, a 

deeper and more nuanced understanding of the distinct biological underpinnings of BD could 

inform nosology in modern psychiatry. 

Conclusion 
Prior GWA studies of psychopathology have aimed to cast a wider net in the hopes that 

a larger sample size would add sufficient power to association analyses so that strong findings 

could be uncovered. However, here we show that in the present state of psychiatry, traditional 

diagnoses blend symptoms to the point that too many variables are being simultaneously 
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assessed in any one association study. Detailed clinical interviews in our possession enable us 

to classify subjects with BD1 dimensionally by specific symptoms that are either present or 

absent from their overall presentation of BD. Specifically, we are particularly interested in 

psychotic features such as delusions and hallucinations, which are canonically associated with 

schizophrenia and related thought disorders, but that also pervade the diagnostic picture of 

patients exhibiting BD. Our study will demonstrate differences in the genetic associations 

among the different, dimensionally classified, groups of individuals. Even though the 

dimensional groupings reduce the statistical power of each group in comparison to the overall 

dataset (via the reduction of sample size), our data shows that signal from groups with more 

homogenous clinical presentations of BD, and thus a reduction of obfuscating noise, is valuable 

in addition to signal from a large sample size. Our results support a GWAS model of 

dimensionally classifying symptoms of BD by the presence or absence of psychotic features in 

order to discern distinct susceptibility genes for specific clinical presentations of BD. In the 

future, we will apply this model more broadly to many different psychopathologies and their 

intersecting symptoms. 
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Materials 
Genotypic Data 

Samples were obtained from the Combined Analysis of Psychiatric Studies (CAPS) 

project, housed at the NRGR. Biospecimens were genotyped with the Affymetrix UK Biobank 

Array, which used the GRCh37/hg19 reference genome build. This genotyping platform was 

designed for high-throughput genotyping of large cohorts and yielded genome-wide marker calls 

for 920,636 SNPs in the CAPS dataset. A total of 7,940 genotyping runs were reported in the 

Affymetrix quality control (QC) report. Of these 7,940 runs, 242 were failed runs, 84 positive 

controls, and 84 negative controls (both standards that help report on the quality of samples). At 

this stage, 7,530 successful runs––potential samples––were captured into CAPS dataset 

genotyping files. 

Phenotypic Data 
To identify individuals who exhibit psychotic features or were substance abusers prior to 

or at the same time as the onset of psychotic symptoms, we employed DIVER, a program 

developed at the Battelle Center for Mathematical Medicine at Ohio State University. DIVER is a 

database that stores phenotypic subject data, including DIGS assessment responses for many 

subjects within the NRGR, including those in the CAPS dataset. DIVER was used to gather all 

requested variables (i.e., responses) for any question within the DIGS. The output was a batch 

of comma separated (CSV) files that each contained a subject identifier in one column and a 

coded response in another column. In typical binary questions, the response ‘no’ was coded ‘0’, 

whereas ‘yes’ was coded ‘1’. 

Methods 
 “PhenotypeManager” (PM) is a Python class of methods that I constructed to: (1) 

process identifiers (IDs), (2) link family members, (3) disqualify and prune individuals and/or 

families that did not meet inclusion criteria, (4) assign formal diagnoses and sub-phenotypes 

(specific symptoms) to individuals, and, ultimately, (5) filter the larger dataset into smaller 
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datasets based on specific combinations of phenotypes and sub-phenotypes. This was largely 

done using “NRGR Identifier Dictionary” (NID), a computational data lookup table that I 

constructed to aggregate various sources of information and ID conversions for hundreds of 

thousands of individuals in the NRGR.  

 “GenotypeProcessor” (GP) is another Python class I constructed that utilizes PM as a 

dependency and was used to create files for later recoding the identifiers in the genotypic 

datasets to match the phenotypic IDs, as well as to have proper family IDs, sexes, and parental 

IDs coded into the files. I used GP to output several files for later recoding by the PLINK 

association analysis software61. The files “recode_ids.txt”, “recode_sex.txt”, and 

“recode_pars.txt” were outputted to respectively recode identifiers, sexes, and parent identifiers 

using PLINK commands. The following PLINK flags were utilized on all retained individuals: “--

update-ids” utilizing “recode_new_ids.txt”, “--update-sex” utilizing “recode_new_sex.txt”, and “--

update-parents” utilizing “recode_new_pars.txt”. 

“BuildDiverDicts” is a script I created to assign gathered sub-phenotypes to individuals 

using DIVER output files, which contained subject IDs and the coded responses. 

BuildDiverDicts was constructed to convert each file into a data frame and, subsequently, into a 

dictionary. The dictionaries were all combined into one large dictionary and were exported as a 

JSON file “diverPhensDicts.json” to be used by PM to assign sub-phenotypes (functionality #4). 

Upon filtering of the dataset into subsets, counts were collected using pivot tables in Excel. 

PLINK is an open-source whole genome association analysis toolset designed at The 

Broad Institute that performs a range large-scale analyses in a computationally efficient 

manner61,62. PLINK was used to perform quality control steps and remove samples and SNPs 

with low call rates, remove SNPs that were out of Hardy-Weinberg Equilibrium, and remove 

samples with a high rate of Mendelian errors62. PLINK was then used to run the TDT analysis. 

Manhattan and Q-Q plots resulting from the analysis were created in the R programming 
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language. Ggplot2, plotly, and qqman are R libraries that helped to create high-quality 

vectorized figures63. 

SNPs were reported in the genotypic files as Affymetrix probe IDs, not typical RSIDs as 

would be found in a database like dbSNP. Some probe IDs were easily converted to RSIDs 

using an Affymetrix annotation file, but many were not. In order to be able to compare findings 

with the literature, I used the UCSC Genome Browser (GRCh37/hg19 build) to search for RSIDs 

of interest manually, using the chromosome number and base pair position of any particular 

SNP (and verified that the major and minor alleles on the browser were those that I was 

expecting). I used LDlink to create zoomed in Manhattan plots of the areas of interest and to 

create heatmap matrices that indicate linkage disequilibrium r2 and D’ values between SNPs in 

the regions of interest64,65. In cases where I wanted to scan a large range of SNPs for LD above 

a certain threshold, I used the GRCh37 Ensembl Linkage Disequilibrium Calculator. I then 

searched SNPs of interest (including SNPs in LD with findings from this analysis) on the 

NHGRI-EBI Catalog of human genome-wide association studies. I used LDlink’s summarized 

queries of the Human Genome Atlas and Roadmap Epigenomics Consortium for RNA 

expression and histone modification in the brain, for the genes of interest. SpliceAI, a machine 

learning algorithm that predicts the likelihood that a SNP variant might impact gene splicing was 

used to analyze the effects of significant SNPs located in an intronic segment of a gene66.  
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Phase 1: Harmonizing Genotype IDs & Phenotype IDs 
Identifier Mapping 

In order to conduct an analysis using the deidentified identifiers (IDs) listed in the CAPS 

dataset, I needed to first have the ability to (1) pull information on each individual’s diagnosis, 

familial relationships, and demographic background and (2) link genotypic-level data to 

phenotypic-level data for each subject in the CAPS dataset. NRGR distribution files are 

spreadsheets that contain pertinent diagnostic, demographic, and family information about each 

subject that appears in NRGR-distributed datasets, including CAPS. Some variables contained 

within NRGR distribution files include “ind_id” (individual identifier), “mother_id”, “father_id”, 

diagnosis, and race. Infinity BiologiX (IBX) (formerly the Rutgers University Cell and DNA 

Repository, RUCDR) is responsible for storing biomaterials for the NRGR. IBX catalogs new 

sample accessions with “RUIDs”, IDs that are different from the NIMH identifiers for phenotypic 

data. RUCDR generated the genotypes for the CAPS project using RUIDs as sample identifiers. 

Distribution files, along with additional files from IBX, enable the linking of genotypic and 

phenotypic IDs and harmonization of the two streams of data that exist for each subject in the 

CAPS dataset. 

To be able to quickly access this information programmatically, I created “NRGR 

Identifier Dictionary” (NID). A dictionary is a highly efficient programming data structure that 

takes in a “key” input and returns a “value” as the output. To maximize the use of this data 

structure for NID, I aggregated information from several relevant distribution files (e.g. bipolar, 

depression, controls) into one data frame, along with the additional mapping files from IBX. 

When constructing NID, I set each key to the individual’s genotypic ID (RUID) and the resultant 

value to a comprehensive dictionary containing all of that subject’s personal deidentified 

information from distribution and IBX files (including the phenotypic identifier). Additionally, a 

separate––inverted––version of NID was also created to accept a phenotypic ID as input in 

order to receive a subject’s informational dictionary in return. 
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Ultimately, NID was converted into a JavaScript Object Notation (JSON) lightweight-

interchange formatted file in order to maximize storage and computational efficiency throughout 

the pipeline that followed. Running the code that built the NID file required approximately 2 

minutes of runtime. In comparison, loading NID from a JSON file into the GWAS pipeline 

consistently required less than 3 seconds of runtime. Additionally, there was no lag when 

searching for keys in NID because of the high computational efficiency of the dictionary’s 

underlying data structure. Thus, the construction of NID was a worthwhile endeavor because it 

prevented several occurrences of computationally taxing and time-consuming lookup operations 

among an already computationally taxing set of programs to be described further in the sections 

that follow. Additionally, since NID served as an overarching lookup tool, it allowed for quick 

interchange between phenotypic and genotypic IDs throughout the pipeline described in the 

following sections. 

Pedigree Analysis 
The “MapIDs” method from PM used NID to map phenotypic-level data to the genotypic-

level data. Using the quality-control report generated by the Affymetrix analysis software, I was 

able to collect the sample IDs and, using NID, convert them into NRGR phenotypic identifiers. 

Additionally, at this stage I captured each individual’s diagnosis and ethnic background, as well 

as the IDs of each individual’s mother and father, when applicable. 

In some cases, individuals who serve as parents in the dataset themselves had parental 

identifiers map to them through NID. Not all individuals present in the NRGR were part of this 

CAPS dataset, and, as such, in some cases subjects had too much information for the sake of 

this analysis. Thus, if these individuals who serve as parents in the CAP dataset do not also 

serve as children (i.e. in a multigenerational pedigree), then they were intentionally not assigned 

parents (rather, they were coded ‘0’, representing ‘not applicable’). In such a case, the parent of 

the parent in the CAPS dataset would serve no purpose when running the TDT analysis since 

they do not themselves contribute to any nuclear family. 
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Before conducting the family-based association study, it was imperative to determine the 

familial relationships among the subjects in the CAPS dataset. As previously discussed, mother 

and father identifiers were added to the original data frame after being passed through the 

MapIDs method. This information afforded me enough information to design an algorithm, 

“BuildPedigree”, that (1) links parents to children, and vice versa, and (2) assigns each subject 

in the study a relative role of mother, father, or child. 

Inclusion Criteria  
The inclusion criteria for a TDT require that each individual map to a family that 

ultimately contains a mother, a father, and at least one child. Each parent and affected child 

must have genotypic level data available for analysis. The TDT uses parent transmitted alleles 

as case alleles, and untransmitted alleles as control alleles. However, the analysis itself is 

focused only on the phenotypes of the affected children. Therefore, only the affected children 

require phenotypic level data for the analysis. Since the individuals being mapped to families 

were gathered from the genotyping quality-control report, we are confident that each individual 

was genotyped. Similarly, because each individual successfully maps to the NRGR’s distribution 

files, we are confident that each individual has accessible phenotypic data within the NRGR. 

Thus, individuals who do not map to both a mother and a father, or a spouse and at least one 

child were pruned from the dataset prior to export into a spreadsheet. As a corollary, any 

families present in the dataset that were not comprised of at least one of each mother, father, 

and child were disqualified from this study. 

Counts Prior to Quality Control & Phenotype Filtering 
The resultant families were exported into an Excel file and each placed on a separate 

row. Each family was assigned an arbitrary number within this dataset, in column A, followed by 

the ID of each individual in the family, starting with the mother’s ID, followed by the father’s ID, 

and then each child. The resulting dataset contained 610 family pedigrees (where all extended 

families were joined into one larger pedigree) comprised of 3229 individuals. Some families 
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were multigenerational and, as such, a total of 735 nuclear families were available to serve as 

trios. Among these trios was a minimum family size of 3 (1 child, 2 parents) and a maximum 

size of 13 (11 children, 2 parents). There was an average of 4.4 members per family in the raw 

dataset, with a standard deviation of 1.3 members and a mode of 4 member-families. 

Recoding Sample Identifiers 
The original CAPS genotype files were saved with Registration IDs as individual 

identifiers, and no family identifiers were saved (all were coded ‘0’ for ‘not applicable’). GP uses 

the Affymetrix QC report and NID to map each unique sample Registration ID to its 

corresponding NRGR RUID, family identifier, father identifier, and mother identifier. In order for 

PLINK to recognize family relationships, it was necessary to recode the genotype files so that 

family identifiers can link different samples (by assigning members of a family the same family 

ID), and so that individuals can be harmonized with the IDs associated with phenotypic data. 

Phase 2: Cleaning & Quality Control 
Duplicate Sample Pruning 

Some samples were successfully genotyped twice on the Affymetrix Biobank array after 

an initial poor-quality genotyping. This led to 121 cases where individual genotyping runs 

mapped to the same RUID. Call rates of duplicate samples were compared; only the sample 

with the higher call rate was included in the study dataset. Each of the lower-quality samples 

among the 121 duplicates were saved to a file, ‘CELS_REMOVE.txt’, for later removal using the 

PLINK “--remove” flag. At this stage, 7,409 successful runs––potential samples––were captured 

into CAPS dataset genotyping files. 

Cleaning Samples with Pre-Identified Genotyping Issues 
Previous analyses of the CAPS dataset by Dr. Veronica Vieland’s group at the Battelle 

Center for Mathematical Medicine have discovered some errors in the genotyping for a subset 

of individuals. Mendelian errors were detected in some subjects. Among other subjects, family 

relationships were found to be incorrect. Additionally, some genotyping runs yielded low 
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resolution along the sex chromosomes and left the true sex of such samples uncertain. Thirty-

five samples had high Mendel errors; the genotypes of these samples were removed, or 

“zeroed-out”. Similarly, 14 samples with unclear or borderline ambiguous sexes were zeroed-out 

at the X chromosome. One sample swap and one family reassignment were also accounted for 

and was executed with the “--update-pars” command. 

‘WriteZeroMarkers’ is a GP method I wrote to create the files that document the subjects 

for whom to zero-out all of the chromosomes or just the X chromosome. Zeroing-out works by 

utilizing the “--zero-cluster” PLINK command after extracting a list of SNPs to remove from the 

total set of 920,639 SNP markers in the Affymetrix UK Biobank array. Zeroing-out the X-related 

SNPs of individuals required recoding only SNPs located on chromosome ‘X’ (coded as 23) or 

‘XY’ (pseudo-autosomal region; coded as 25). Among the X chromosome and pseudo 

autosomal region alone there were 37,245 SNPs, which were zeroed-out in 14 individuals. 

Quality Control in PLINK 
Remove Subjects with a High Proportion of Missing Genotype Calls 

The “--mind” flag was run with a cutoff of 0.03, which removed any DNA samples with a 

call rate of less than 97%. In total, 920,636 variants and 7,493 people (3,060 males, 4,443 

females) were loaded from the genotype file. Forty people were removed due to missing 

genotype data; thus, 7,453 individuals passed filters and QC. The number of variants was not 

changed at this point. 

Remove Markers Below Threshold Genotyping Rate 
The “--geno” flag was run with a cutoff of 0.02, which removed any SNPs that were 

missing more than 2% of the genotypes. A total of 920,636 SNP variants were loaded. Of these, 

29,977 variants were removed due to missing genotype data; thus, 890,659 variants passed 

filters and QC. The number of individuals was not changed at this point. 
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Remove Markers That Are Out of Hardy-Weinberg Equilibrium 
The “--hwe” flag was run with a cutoff of 0.00001, which removed any SNPs calculated 

to be out of Hardy-Weinberg Equilibrium with a p-value less than 0.00001. In total, 890,659 

variants and 7,453 people (3,041 males, 4,412 females) were loaded. Of these, 97,409 variants 

were removed due to having a Hardy-Weinberg exact test statistic below the threshold. Thus, 

793,250 variants passed filters and QC. The number of individuals was not changed at this 

point. 

Remove Subjects with a High Frequency of Missing Calls, Again 
The “--mind” flag was run again, with a cutoff of 0.05 to remove any DNA samples with a 

call rate less than 95%. This was just to make sure that the previous two cleaning steps didn’t 

remove enough SNPs to have some samples slip below a good threshold. A total of 793,250 

variants and 7453 people (3041 males, 4412 females) were loaded in. No individuals were 

removed due to missing genotype data and, thus, the original counts were not changed at this 

step. 

Remove Highly Rare Variants 
Some SNPs do not show any variation and, as such, can be removed. The “--maf” flag 

was run with a cutoff of 0.001, to remove SNPs with a minor allele frequency (MAF) below 

0.001. Similarly, if only two or three people in the whole sample set have a particular minor 

allele, that can be indicative of an artifact that should be removed (or at best something that 

won’t be powerful enough to yield any results). In total, 793,250 variants and 7,453 people 

(3,041 males, 4,412 females) were loaded. Of these, 182,737 variants were below the minor 

allele threshold and were removed. Thus, 610,513 variants passed filters and QC at this stage. 

The number of individuals was not changed at this point. 

Remove Families or Markers with High Proportion of Mendel Errors 
Lastly, the “--me” flag was run with the cutoff values of 0.05 and 0.01. The first cutoff, 

0.05, represents the threshold at which PLINK will remove entire families where there is a 
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problem with greater than 5% of all SNPs. The second cutoff, 0.01, represents SNPs that have 

greater than 1% of errors across all families. In total, 610,513 variants and 7,453 people (3,041 

males, 4,412 females) were loaded in. A total of 3,089,134 Mendel errors were detected. To 

account for this, 28,164 variants and 123 individuals were excluded. Thus, 582,349 variants and 

7,330 people passed filters and QC at this stage. The total genotyping rate was 0.997518. 

Reassessing Family Inclusion Status 
After completing the quality control steps, I ran a script I wrote that parses individuals in the 

output files from before the first use of the Mendel command and after the second (and last) use 

of the Mendel command. This program then collects the discrepant individual IDs––those who 

were present in the pre-dataset but pruned from the post-dataset. These individuals were saved 

to an Excel file to be later removed from the phenotypic subsets. 

Phase 3: Sub-Phenotype Collection 
Traits of Interest 

Psychotic features are known to occur in some individuals who are diagnosed with BD1. 

Typically, they will present as delusions of varying type, intensity, and bizarreness. Sometimes 

they will be accompanied by auditory hallucinations. At other times, they will be accompanied by 

visual hallucinations (however, visual hallucinations often point to other neurological conditions). 

All cases of psychosis will present with some combination of these factors and can be 

distinguished from individuals who suffer from mood disorders without any psychotic features. 

In order to analyze true cases of psychotic features presenting with a mood disorder, it 

was prudent to remove individuals (and exclude any families that were subsequently 

disqualified) who had a history of substance abuse prior to occurrences of any particular 

psychotic event, up to and including the point at which psychotic features began to manifest. 

Certain substances, such as stimulants like cocaine or hallucinogens like PCP, are known to 

induce psychosis in individuals, and are sometimes attributed as triggers for the later onset of 

psychotic disorders. As such, we opted to disqualify any individuals for whom the environmental 
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pressures leading to the onset of their psychotic features were greater than those of the other 

individuals in the dataset. 

In this relatively small dataset, controlling for other environmental triggers such as 

trauma from emotional, physical, or sexual abuse, as well as neglect or long-term distress would 

greatly reduce the power of this analysis through a large reduction of the sample size. At the 

present moment, this project balances depth of phenotyping and sample size, as they are 

inversely related since no two individuals share identical life experiences. Moving forward, as 

we scale up our project, we hope to include more phenotypic filters and, thus, more dimensions 

to our analysis. 

DIGS Variables for Traits of Interest 
The variable I17704 was taken from the psychosis section of the DIGS. The item poses 

the following question: “Since you first began experiencing (psychotic symptoms) have you ever 

returned to your normal self for at least two months?” Individuals who were prompted to respond 

to this question have all already been determined to have had previous psychotic episodes, 

either currently or in the past. Thus, responses to this question give a detailed picture of the 

subject’s psychotic experiences. We can further deduce that a person who responded ‘no’––that 

they have not returned to their normal self since the onset of their symptoms––likely has 

experienced more severe symptoms than someone who responded ‘yes’––that they have had 

periods of returning to their normal selves since the initial onset of their psychosis. Thus, this 

single question, unique to the highly descriptive DIGS interview, serves as an effective way to 

identify psychotic individuals for this study. However, it is possible that this variable should have 

been asked by the interviewer but was left out or the section was skipped. Thus, it is possible 

that data from this one question may be missing in some individuals’ responses. 

The variable I10940 is a more straightforward question which asks subjects if they have 

ever had a delusional episode. This question is ancillary to the previous one: individuals who 

responded ‘yes’ to this question but did not have a response to the psychosis question (i.e. have 
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never fully expressed a psychotic episode) are informative because they indicate a possible 

psychotic experience. This variable serves an important purpose in that it may reveal some 

individuals who have experienced psychotic features alongside their BD, but for some reason 

were not reported via the previous variable (I17704). 

The variable I17748 delineates substance abuse history, when applicable. Individuals 

who indicated that they were substance abusers (of cocaine, hallucinogens, etc.) prior to or at 

the same time as the onset of their psychiatric disorder were excluded in order to eliminate any 

cases of substance induced psychiatric disorder. Individuals who became substance abusers 

only after their symptoms came about and thereafter were retained, since it is not uncommon for 

individuals to attempt to self-medicate psychiatric symptoms with substances. 

Finally, to further control for other sources of diagnostic variation, we found a DIGS 

variable “SEV_MANIA_DAYS” that reports on the number of days in which a subject has 

claimed to have experienced a severe manic episode, in line with BD1. As such, in order to be 

confident in the severity of the manic episodes exhibited by the subjects of my analysis, we 

opted to exclude any individuals who did not have a response for this question or had a 

response equal to “zero days”. 

Phase 4: TDT in PLINK 
Phenotypic Subset Construction 

‘DatasetConstructor’ is an algorithm I constructed that uses the complete dataset with 

previously added phenotypes and sub-phenotypes, and creates an Excel spreadsheet of 

individuals for each subset of interest––namely BD1-NP, BD1-P, and BD1-MIX. Note that after 

this filtering step, all remaining families were reassessed for their fulfillment of the inclusion 

criteria. Additionally, using the Excel file with QC disqualified individuals created at the end of 

the QC steps, I removed these disqualified individuals from the phenotypic subsets, as well. 

Following this pruning step, if exclusion of certain individuals disqualified any family from the 
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criteria required (two parents and at least one affected child), that entire family was now pruned 

from the phenotypic subsets. 

Sibling Inclusion Status 
All siblings who are not documented with the symptoms of interest were removed from 

any particular subset. In certain cases, unaffected siblings can increase the power of the TDT 

statistic; however, this is generally not the case when studying psychiatric disorders with 

relatively low penetrance. In the case of a highly penetrant trait, the genotypes of unaffected 

siblings would be more likely to display an inverse relationship where unaffected siblings do not 

have a particular allele that affected children do have. When penetrance is low, however, the 

segregation of alleles in unaffected siblings will not deviate much from a mendelian ratio of 

inheritance. In such a case, a mendelian ratio would simply increase the overall randomness of 

the distribution. This, in turn, would reduce the power of the study at any given locus. Thus, in 

this study, the retention of unaffected siblings would likely unnecessarily reduce signal and 

obscure potential findings34. 

Genotypic Subset Construction 
Following phenotypic subset construction, the PLINK commands “--keep” and “--pheno” 

were used on the genotype files to subset individuals of interest and recode the phenotypes of 

these individuals, respectively. This process was carried out for each of the three groups: BD-

MIX, BD1-NP, and BD1-P. Each subset was filtered down from the clean master dataset. In the 

final datasets, all remaining children are affected and thus assigned a phenotype code of “2”. 

Furthermore, parent phenotypes are not considered in order to avoid population stratification, 

and so their phenotypes are coded “0”. As previously mentioned, all unaffected siblings were 

removed while identifying individuals of interest and their parents. 

Counts After Cleaning, QC & Phenotype Filtering 
After cleaning, quality control, and filtering for phenotypes, several families were pruned 

from the analysis. In reporting the counts of the remaining families, the number of “working” 
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families refers to the number of nuclear families present in the subset, regardless of whether or 

not certain nuclear families are connected in the same pedigree. However, it is often the case 

that one individual will appear in one nuclear family as an affected child, but also as a parent in 

another nuclear family. Additionally, two separate nuclear families may appear in the same 

family due to sibship among parents. Counts that consider such families as one are referred to 

by a total count of pedigrees in this study. The following counts were determined using pivot 

tables in Excel. 

BD1-MIX Subset 
Among the BD1-MIX subset there remained 236 total pedigrees: 256 working families 

that consists of 899 individuals (table 1). Of the 236 pedigrees, 103 contain three members (i.e. 

one affected child), 101 contain four members (i.e. two affected children), and 14 contain five 

members (i.e. three affected children). There are an additional 18 pedigrees (116 individuals) 

that contain more than one nuclear family and can be broken down into 38 working families. 

Five of these are multigenerational pedigrees, where an affected child in one nuclear family is 

the parent in another. The other 13 pedigrees consist of parents who are siblings and with 

children who are cousins. In sum, of the 899 individuals, 391 are affected children, 508 are 

parents. 

BD1-NP Subset 
Among the BD1-NP subset there remained 129 total pedigrees: 138 working families that 

consisted of 449 individuals (table 2). Of the 129 pedigrees, 88 contain three members (i.e. one 

affected child), 31 contain four members (i.e. two affected children), and one contains five 

members (i.e. three affected children). Additionally, there is one pedigree containing five 

individuals that can be broken down into two families of three individuals, where one individual 

is present in both. There are five pedigrees of size six that can be split into separate working 

families of size three.  Finally, there are three pedigrees of size seven that can be split into 
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separate working families of size three and four. In sum, of the 449 individuals, 173 are affected 

children, 276 are parents. 

BD1-P Subset 
Among the BD1-P subset there remained 155 total pedigrees: 161 working families that 

consists of 537 individuals (table 3). Of the 155 pedigrees, 99 contain three members (i.e. one 

affected child), 44 contain four members (i.e. two affected children), and six contain five 

members (i.e. three affected children). There are an additional 6 pedigrees (34 individuals) that 

contain more than one nuclear family and can be broken down into 12 working families. Two of 

these are multigenerational pedigrees, where an affected child in one nuclear family is the 

parent in another. Another has two separate families connected by one mother. The other three 

pedigrees consist of parents who are siblings, with children who are cousins. In sum, of the 537 

individuals, 218 are affected children and 319 are parents (one parent serves in two families). 

Transmission Disequilibrium Test 
 At this point, we set out to run the TDT on each subset using the PLINK “--tdt” flag. The 

PLINK TDT flag calculates p-values for each of the 582,349 SNP variants that remained in the 

dataset after cleaning and quality control. Each p-value represents the probability that the 

association between a particular SNP and the phenotypes of interest are due to chance. As 

such, the lower the p-value, the more likely that the association between a SNP and the 

phenotypes in question are not spurious and may be causally related. Thus, a SNP with a small 

p-value would be indicative of a genetic basis for the phenotypes in question at or nearby the 

location of the SNP.  

Optional Reduction in Computational Intensity of Analysis 
Certain methods of analysis are highly computationally intensive. In such cases, using 

small pedigrees lessens the computational intensity. Therefore, at the risk of inflating 

association signal, breaking down multigenerational families into separate nuclear families in 

order to scan the genome for association is often a good approach when seeking to minimize 
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the intensity of the computations. After resulting areas of interest are discovered, another––

standard––association can be run on the areas of interest using the original pedigree structure. 

In this way, accurate results can be obtained in a less computationally intensive manner.  

PLINK generally executes its tasks very promptly; this issue did not arise in the CAPS 

dataset. However. other methods are much slower, such as calculating the Posterior Probability 

of Linkage (PPL). Thus, although we did not need to use this two-step approach for this dataset, 

I have built functionality in my GWAS pipeline to allow for utilization of this approach. This 

enables strong functionality, even in the face of massive sample sizes.  

If initiated, the code will separate nuclear families that are connected by one multifaceted 

individual in a larger family pedigree. Among the multigenerational families, the family identifiers 

of the nuclear families in which the multifaceted individual is a child will all be appended by an 

“R” and saved in a recoding file, “recode_faceted_fams.txt”, next to the original identifier. For 

example, the family identifier “15-71-96065” would be recoded to “15-71-96065R” in whichever 

family the multifaceted individual was a child. The choice of recoding nuclear families where the 

multifaceted individual is a child was arbitrary and chosen for the sake of consistency and 

computational simplicity. Using the “--update-ids” flag, I have set the program to recode all of 

the subject records saved to “recode_faceted_fams.txt”, save for the multifaceted individual in 

the family.  

I had saved the original identifiers of multifaced individuals to a separate file, 

“multifaceted_inds.txt”, and used the “--keep” flag to save each of these individuals’ record of 

genotype data. In a separate file, “recode_multifaceted_inds.txt”, I had saved the modified 

family identifier (identifier plus an appended ‘R’) and used the “--update-ids” flag on the 

individuals in this small subset of individuals to create a record for each of these individuals that 

will connect each subject to the individuals with the modified family identifier. After setting the 

program to recode the parent IDs in the duplicate multifaceted individual entries, I have set the 

program to use a flag “--bmerge” to combine the CAPS dataset with the second facet of the 
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small subset of multifaceted individuals. This procedure allows for the desired result where 

multigenerational families are separated into unique families of smaller size, and thus, lower 

computational complexity. 

Findings 
BD1-MIX Subset 

The following loci correspond with the most significant SNP association findings in the 

BD1-MIX subset (table 4), with p-values < 5.0E-06: chr23:19,781,333 (p=2.54E-14), 

chr8:59,164,297 (p=8.35E-07), chr14:106,321,212 (p=1.5E-06), chr18:29,101,207 (p=1.62E-

06), chr9:20,922,554 (p=4.23E-06) (figure 1). 

BD1-NP Subset 
The following loci correspond with the most significant SNP association findings in the 

BD1-NP subset (table 5), with p-values < 5.0E-06: chr23:19,781,333 (p=4.3E-08), 

chr6:158,349,893 (p=1.9E-06), chr6:158,329,778 (2.6E-06), chr6:158,317,132 (p=2.6E-06), 

chr6:158,340,497 (p=4.3E-06). Note that four of these five SNPs are located in the vicinity of 

one another and are thus suggestive of interesting results (figure 2). The RSIDs for these four 

adjacent SNPs are, rs2273070, rs3840366, rs6924813, and rs3047738. 

BD1-P Subset 
The following loci correspond with the most significant SNP association findings in the 

BD1-P subset (table 6), with p-values < 5.0E-06: chr23:19,781,333 (p=1.137E-07) and 

chr13:41,995,485 (p=3.46E-06) (figure 3). 

 

 

 

  



  41 

 

 

 

 

 

DISCUSSION 

  



  42 

Significance Thresholds in GWAS 
A large multiple testing correction must be made to the typical alpha of 0.05 when 

dealing with p-values in a study that conducts numerous tests, such as this one with 582,349 

polymorphisms analyzed. A Bonferroni correction is likely too conservative for GWA studies 

because the different variants assessed are not being tested independently due to linkage 

disequilibrium (LD)36. However, a large correction is quite necessary; the current consensus is 

that genome-wide significance can be asserted at an alpha of 5x10-836,67. P-values below 5x10-8 

are not conclusively significant in a GWAS because multiple factors could lead to inflated results 

at any locus. However, studies have also demonstrated several instances where results with p-

values below 1x10-7 are replicable and acceptible36,67. Furthermore, depending on the minor 

allele frequency (MAF) of the SNP in question, there may be more flexibility in terms of setting a 

significance threshold36. In fact, it has been determined that p-value thresholds of 1x10−6, 

7x10−7, 5x10−7 and 3x10−7, are reasonable for MAF ≥ 5%, MAF ≥ 1%, MAF ≥ 0.5% and MAF ≥ 

0.1%, respectively36. 

Another point to consider depends on the fact that many SNPs are not completely 

independent of neighboring SNPs, due to LD. If the p-value for association between a SNP and 

the symptomatology of interest is very small, one would expect that other SNPs in LD with the 

SNP of interest would also have a smaller p-value than surrounding SNPs that are not in LD 

with the SNP of interest68. As such, we often expect to see clustering of low p-value findings at 

loci of interest. However, in the event that there is no LD between the significant SNP and its 

neighboring SNPs, no clustering would be anticipated. 

Thus, in this study, results were plotted on Manhattan plots (figures 1-3), with a lower-

bound threshold of 5x10-6 for interesting findings, and an upper-bound of 5x10-8 for genome-

wide significant findings. However, MAF adjustments to the significance threshold are discussed 

whenever it is prudent to do so. 
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Summary of Findings 
Figure 1a displays results for the BD1-MIX pooled samples in a Manhattan plot. In this 

sample space, five SNPs surpassed the lower-bound threshold. The lead SNP, rs12010076 

(chrX:19781333) returned a p-value of 2.5x10-14, which surpassed the threshold for genome-

wide significance. This SNP is not in LD with any of its neighboring SNPs (figure 1b), which 

explains the lack of clustering at this locus64. The minor allele ‘A’ has a frequency of 0.016 in 

this dataset; globally the MAF=0.01, and in European populations it has a MAF=0.0007269. This 

SNP is an intronic variant within the SH3KBP1 gene and has a SpliceAI ∆ score of 0.00, 

indicating that variants at this locus are unlikely to impact splicing of the exons in this gene66. 

The clinical significance of this variant is still unknown today and has yet to be characterized. 

The following SNP, rs7003372 (chr8:59164297), returned a p-value of 8.4x10-7, which 

surpassed the lower bound threshold for significance. With MAF=0.3968 in European 

populations, this SNP comfortably surpasses the 1.0x10-6 MAF-adjusted significance 

threshold36,70. This SNP, rs7003372 is in minimal LD (r2=0.014, D’=0.515; 323,373 base pair 

separation) with the 6th most significant SNP finding, rs1992045 (MAF=0.082), of a BD and 

schizophrenia meta-analysis conducted in 2010 (p=1.67x10-7)71. An association plot and LD 

matrix of this specific region and the relationships between these SNPs can be seen in figures 

1c and 1d, respectively. Although the r2 parameter is low to begin with, the lack of a significant 

finding at rs1992045 itself in this dataset casts doubt on the potential significance of rs7003372. 

Furthermore, the frequency at which the minor allele was transmitted in the dataset is 0.629, 

which does not coincide with its MAF in global or European populations. 

SNPs rs281865422, rs553299589, and rs117655852, rs76757914, and rs58793557 do 

not have R’ values of LD greater than 0.8 with any neighboring SNPs (determined using 

Ensembl GRCh37 Linkage Disequilibrium Calculator). Previous findings have demonstrated that 

rs553299589 is a pathogenic SNP associated with cardiomyopathy with a very small MAF in the 

European population. Although rs76757914 is an intronic variant, it has a SpliceAI ∆ of 0.00 and 
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therefore does not likely impact splicing patterns. None of these SNPs have been previously 

associated with BD in the literature and, as such, require further characterization. SNP 

rs75565666 is in LD with 20 adjacent SNPs; however, none of these other SNPs are present in 

this dataset to verify the result. SNP rs3840366 on chromosome 6 (European MAF=0.226), with 

a p-value of 1.2x10-5 is in strong LD (r2=0.9472, D’=1) with a neighboring SNP, rs2273070 

(European MAF=0.232), which returned a p-value of 9.1x10-5. These chromosome 6 findings 

are below the threshold for significance (MAF adjusted or not) but are nonetheless intriguing. 

Overall, some of these SNPs may be true associations with BD. Future work will include 

validating these findings by thoroughly analyzing these loci, in a study of greater power. 

The BD1-MIX cohort contained 899 individuals, a fairly modest sample size. However, 

having conducted a family-based GWAS, which is robust to within-family population 

stratification, and with families of predominantly European descent that minimize between-family 

population stratification, our dataset does confer some sample-size leniencies in comparison to 

large scale case-control analyses. As such, the aim of this project was to create smaller subsets 

from the pooled dataset with the hopes that reducing the clinical heterogeneity seen in cases of 

BD would allow for further discernment of signal, even in the face of reduced sample sizes. 

In taking a look at the BD1-NP cohort, which––with a sample size of 449––has less 

statistical power than the BD1-MIX cohort, it is interesting to see a breakout cluster of four SNPs 

with p-values less than 5.0x10-6 (figure 2a). This cluster of four SNPs are intron variants: 

rs2273070, rs3840366, rs6924813, and rs3047738 on 6q25.3 and indicate early signs of 

association specifically with non-psychotic bipolar disorder (figure 2b). The p-values for these 

variants are 1.85x10-6, 2.6x10-6, 2.6x10-6, and 4.3x10-6, respectively. Each of these SNPs has a 

MAF in the range of 0.24-0.26 (figure 2c), which is similar to the observed frequencies in the 

dataset in the range of 0.29-0.30. These SNPs are all in strong LD with one another (figures 2d-

e) and are located along the Sorting Nexin 9 (SNX9) gene, which encodes a protein of the 

Sorting Nexin family and is involved in intracellular vesicle trafficking72,73. Not much is yet 
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understood about this particular gene, however it has previously been associated with 

Borderline Personality Disorder74. SpliceAI ∆ scores at these SNPs are quite low, thus 

suggesting that the mechanism by which the variants act does not involve altering splicing 

patterns. Rather, it is possible that these intronic variants could potentially affect regulatory 

sequences and thus expression patterns, or epigenetic states. Figure 2f shows the RNA 

expression overview of the SNX9 gene transcript in various tissues from the Human Protein 

Atlas. SNX9 shows low tissue specificity and is expressed throughout the central nervous 

system. Figure 2g shows the SNX9 regulatory chromatin states from histone ChIP-Seq from the 

Roadmap Epigenomics Consortium. This figure demonstrates that certain chromatin states as 

well as methylation and acetylation patterns are present in brain tissues and are specifically not 

present in other tissues throughout the body, and thus indicate that this is a potential locus of 

interest for epigenetic analyses. It is important to note, however, that (due to LD) a nearby gene 

may truly be causing the association and not SNX9. Nonetheless, this cluster of SNPs is 

indicative of a potential significant finding that can be further validated through a replication 

study with greater statistical power. 

More interestingly, this association does not hold among the BD1-P group (n=537) 

(figure 3). In fact, in the BD1-P group, those four SNPs of interest completely lack significance. 

Whereas the lead SNP of the cluster has a p-value of 1.85x10-6 in the BD1-NP cohort, in the 

BD1-P cohort that same SNP has a p-value of 0.8571 (no significance), a 171,514-fold 

difference. Furthermore, returning to the BD1-MIX cohort, it is clear that the 4 SNPs of interest 

on chromosome 6 show an intermediate level of association when the two psychotic/non-

psychotic features groups are pooled, further supporting our findings (figure 1a). In fact, two of 

these SNPs were directly discussed among the top-10 significant findings of the pooled sample 

space. 

Quantile-Quantile (QQ) plots for each of these three groups tend to match the quantiles 

of a normal distribution overall, except for an unknown effect that has caused the distribution to 
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stagger along the line of best fit (figures 1e, 2h, and 3b). As such, these plots suggest both that 

there may be a slight batch effect among the genotypes and that greater power is needed in 

order to confirm these results. 

Especially given that the sample size has decreased in the subsets in comparison to the 

pooled samples (and thus the statistical power of our analysis has diminished), these highly 

stratified findings on chromosome 6 are validate our hypothesis. Such a cluster of findings with 

increased resolution in the BD1-NP cohort relative to the pooled samples, and a clear lack of 

significance at this locus among individuals with psychotic features, indicate that clinical 

heterogeneity obstructs potential findings in GWA studies. Such findings demonstrate that more 

efforts need to be made to homogenize subjects according to the specific traits that together 

manifest complex diseases with many comorbidities. 

Considerations for GWAS 
Ethics 

As previously discussed, population stratification is a legitimate concern when 

conducting large-scale genetic analyses. Data analyzed from GWA studies are only meaningful 

when cases are matched to controls in terms of ancestry. Furthermore, valuable associations 

gathered from GWA studies can only be applied to the populations on which they were carried 

out37,75. For example, if a GWAS was conducted on a large group of Northern Europeans, 

results from the GWAS would only benefit individuals of European decent. GWAS and polygenic 

risk scoring can thus lead to significant healthcare disparities if action is not taken to prevent it. 

Whereas populations that are selected for the studies will have better diagnostic information to 

treat disorders that span the globe, those populations that are neglected from studies will be 

even more so neglected later on76. Thus, in order to level the playing field, more studies need to 

be carried out that represent populations from all over the world75. This will allow such work, and 

other work in the field, to ultimately increase our knowledge of the genetic basis of complex 

diseases76,77. 
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Limitations of the Field 
While such an analysis will help contribute to the vast amounts of data that are being 

amassed––and potentially from a unique perspective that will help researchers to better 

understand the etiology of specific complex phenotypes related to BD––locating the causative 

genes in a vacuum will not directly open the door towards a complete and thorough 

understanding of the disorder78,79. Medicine has always had the aim of uncovering the etiologies 

of diseases in an attempt to better classify and treat them. Furthermore, at this point in time, 

what with -omics being a nascent field, we are still in the dark about the majority of the 

pathways that we are studying78. As candidate genes are being discovered, how can we move 

away from discovering plausibly correlated genes to discovering proof for their causative roles in 

diseases? Chakravarti, et al. have suggested some general rules that take from Koch’s 

postulates of microbiology, including that (1) candidate genes must be enriched in patients, (2) 

the mutant phenotype needs to be demonstrated in a model system, (3) wild-type human alleles 

need to be able to rescue the phenotype, and conversely (4) mutant human alleles must fail to 

rescue the mutant phenotype78. Such rules are incredibly difficult to adhere to in the study of 

psychiatric genetics and pose significant challenges beyond the basic genetic challenges 

discussed in the introduction. However, as already discussed, polygenic risk scoring is a 

promising method for combining the effects of numerous genes into one metric of susceptibility8.  

TDT Alternative 
 Granted that psychiatric disorders are highly polygenic, and therefore no one or handful 

of genes is directly responsible for the manifestation of psychopathologies, a very large sample 

size is required in order to achieve sufficient statistical power to obtain meaningful signal. One 

of the main challenges in a GWAS is the issue of obtaining a large enough sample size to allow 

the appearance of this signal for association. This is a struggle that commonly pervades studies 

of complex disorders. Given that family-based models for association have more sample data 
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than are actually used in the calculation of chi-squared statistics and p-values, a hybrid variation 

to the traditional TDT has been developed. 

ParenTDT is a variation of the TDT that does take parent phenotypes into account and is 

in many ways a hybrid family/case-control analysis80. Overall, it retains the structure of a family-

based analysis, but, in addition to the phenotypes of children, the ParenTDT takes parental 

phenotypes into account in its formula. This has the potential to increase the power of a study, 

because the effective sample size of subjects being analyzed is increased. However, since the 

parent genotypes may have arisen from different ancestral lineages, case alleles may not be 

well matched to control alleles within families. Therefore, the inclusion of parents as subjects in 

the analysis allows for the possibility of population stratification and, thus, an increased 

susceptibility to false-positive findings. Thus, although we did run ParenTDT analyses in 

addition to TDT, we are not reporting any findings with marginally increased significance, as 

potentially uncontrolled population stratification puts such findings into question. Future work will 

involve running principal components analysis on our samples in order to effectively match the 

case alleles to control alleles and minimize the effects of population stratification33. 

Future Direction 
Breaking down broad phenotypes into more specific features is a challenging task. This 

is primarily due to the massive sample size required in order to discern any specific phenotypes, 

let alone highly polygenic phenotypes. The CAPS dataset, phenotyped with the DIGS 

assessment, allows for the detailed identification of interesting symptoms at varying levels of 

severity and paves the way for new associations to be found among specific sub-phenotypes of 

Bipolar Disorder. This dataset will ultimately serve as a crucial starting point via which loci of 

interest will be identified for further analysis. After this component of the broader study is 

complete, the task will shift toward including case-control data from other studies that have been 

deposited into the NRGR. 
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To perform a case-control GWAS on additional samples, I will first have to first remove 

the potential effects of population stratification. This effect has to be minimized prior to 

conducting an analysis for association using a principal component analysis; otherwise, the 

analysis will yield false positives. Additionally, case-control data were genotyped using a variety 

of genotyping chips from different companies. Thus, the next step would be to determine the 

intersection set of markers that were used on the different genotyping chips used in different 

studies or to impute missing markers in some platforms81. 

Afterword 
By way of creating more objective measures for the determination of susceptibility for 

psychopathologies, we hope to increase education, prevention and treatment for disorders of 

mental health among those who are most at risk for manifesting them. We hope to see a future 

where prevention starts before the first day outside of the womb: where parents will be made 

aware of their children’s susceptibilities early on and will be better equipped to pave the way for 

better prevention of onset, understanding, and treatment planning for their children. Ultimately 

and over time, we hope that a deep understanding of the genetic basis for psychopathologies 

will also decrease the stigma that Bipolar Disorder and other psychiatric disorders carry, so that 

those stuck in the grasp of such disorders will be treated with more compassion. 
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Tables 
 
 
Individuals Per 

Pedigree 

Num. 

Individuals 
Pedigrees 

Working 

Families 

3 309 103 134 

4 404 101 108 

5 70 14 14 

6 53 9 0 

7 47 7 0 

8 0 0 0 

9 16 2 0 

TOTAL 899 236 256 

 

Table 1. BD1-MIX subset counts, broken down by the number of individuals per pedigree (first 

column). Each row contains the number of individuals present for a pedigree of a particular size, 

followed by the number of pedigrees within the subset with the corresponding number of 

individuals. Lastly the final column adjusts the number of pedigrees by accounting for all nuclear 

families, which causes the higher-order pedigrees to be broken down into the multiple smaller 

pedigrees of which they are comprised. 
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Individuals Per 

Pedigree 

Num. 

Individuals 

Pedigrees Working 

Families 

3 264 88 103 

4 124 31 34 

5 5 1 1 

6 35 6 0 

7 21 3 0 

TOTAL 449 129 138 

 

Table 2. BD1-NP subset counts, broken down by the number of individuals per pedigree (first 

column). Each row contains the number of individuals present for a pedigree of a particular size, 

followed by the number of pedigrees within the subset with the corresponding number of 

individuals. Lastly the final column adjusts the number of pedigrees by accounting for all nuclear 

families, which causes the higher-order pedigrees to be broken down into the multiple smaller 

pedigrees of which they are comprised. 

 

Individuals Per 

Pedigree 

Num. 

Individuals 

Pedigrees Working 

Families 

3 297 99 110 

4 176 44 45 

5 30 6 6 

6 28 5 0 

7 6 1 0 

TOTAL 537 155 161 
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Table 3. BD1-P subset counts, broken down by the number of individuals per pedigree (first 

column). Each row contains the number of individuals present for a pedigree of a particular size, 

followed by the number of pedigrees within the subset with the corresponding number of 

individuals. Lastly the final column adjusts the number of pedigrees by accounting for all nuclear 

families, which causes the higher-order pedigrees to be broken down into the multiple smaller 

pedigrees of which they are comprised. 

 

 

CHR BP RSID SNP OR CHISQ P 
23 19781333 rs12010076 AX-42738377 0.01639 58.06 2.54E-14 
8 59164297 rs7003372 AX-16002599 1.696 24.27 8.35E-07 

14 106321212 rs281865422 AX-168647780 0.03846 23.15 1.50E-06 
18 29101207 rs553299589 AX-168641298 0 23.00 1.62E-06 
9 20922554 rs117655852 AX-36953059 0.04167 21.16 4.23E-06 

14 83058722 rs75565666 AX-12838593 0.2708 20.08 7.42E-06 
9 78902186 rs76757914 AX-37047267 0 20.00 7.74E-06 

14 56928268 rs58793557 AX-12792054 0 20.00 7.74E-06 
6 158329778 rs3840366 AX-151210704 0.5957 19.25 1.15E-05 
6 158340497 rs3047738 AX-120518563 0.5946 19.07 1.26E-05 

 

Table 4. Top 10 most significant associations found in the BD1-MIX dataset. 

 
 

CHR BP RSID SNP OR CHISQ P 
23 19781333 rs12010076 AX-42738377 0 30.00 4.32E-08 
6 158349893 rs2273070 AX-15298641 0.4149 22.74 1.85E-06 
6 158329778 rs3840366 AX-151210704 0.4194 22.09 2.60E-06 
6 158317132 rs6924813 AX-15298546 0.4194 22.09 2.60E-06 
6 158340497 rs3047738 AX-120518563 0.4222 21.12 4.30E-06 

 
Table 5. Top 5 most significant associations found in the BD1-NP subset. 
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CHR BP RSID SNP OR CHISQ P 
23 19781333 rs12010076 AX-42738377 0.03226 28.12 1.14E-07 
13 41995485 rs9566764 AX-11695142 0.5241 21.54 3.46E-06 
7 28764109 rs2066979 AX-11364907 1.87 20.31 6.58E-06 
1 66617553 rs72679119 AX-13088763 2.556 18.38 1.81E-05 
9 138058487 rs12379748 AX-42567171 2.083 18.27 1.92E-05 

 
Table 6. Top 10 most significant associations found in the BD1-P subset. 
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Figures 
 

Bipolar Disorder, Type 1: Severe Mania, Mixed Psychotic Features 

 
 

Figure 1a. Manhattan plot of mixed BD1-NP and BD1-P datasets. The total sample size 

includes 899 individuals (391 affected children, 508 parents). A total of 582,349 variants are 

plotted as data points. Along the Y-axis, the data points represent the negative logarithm of p-

values for association between any particular SNP and the phenotype of interest. The x-axis 

represents chromosomal loci; colors alternate between grey and blue to differentiate the 

chromosomes. The red and gold horizontal lines represent lenient (5.0E-6) and stringent (5.0E-

8) thresholds for significance, although confidence in findings requires clustering of closely 

positioned SNPs above a threshold line. Overall, no significant findings can be discerned from 

this heterogeneous group of individuals who experience BD, some with psychotic features and 

some without. P-values highlighted in gold represent SNPs that do indicate significance among 

the BD1-NP subset. Despite the BD1-NP subset having a smaller sample size, five SNPs do 

cross the lenient threshold in that subset and thus indicate significance specifically for the BD1-

NP subset. Note that the lead SNP on chromosome X (23) is not visible on this figure. 
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Figure 1b. R2 and D’ coefficients calculated and displayed in a matrix for SNPs including and 

surrounding BD1-MIX lead SNP, rs12010076. Darker red indicates greater r2 values, while 

darker blue indicates greater D’ values. This heatmap shows no LD between rs12010076 and 

the SNPs in its vicinity. Created using LDmatrix65. 
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Figure 1c. Association plot of chr8:58664297-59664297. BD1-MIX SNP rs7003372 shown as a 

blue circle; literature-reported SNP rs1992045 circled in black. Darker red indicates stronger LD 

(D’) between SNP and rs7003372. Smaller circle circumference represents smaller MAF; larger 

circumference represents larger MAF. Lack of significance at rs1992045 and in between the two 

SNPs of interest is peculiar and requires further analysis. Created using LDassoc65. 
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Figure 1d. R2 and D’ coefficients calculated and displayed in a matrix for SNPs including and 

surrounding BD1-MIX SNP, rs7003372 (boxed in orange along x-axis), and BD associated SNP 

reported in the literature, rs1992045 (boxed in blue along y-axis). Darker red indicates greater r2 

values and darker blue indicates greater D’ values. D’=0.515 (top, middle) and an R2=0.014 

(left, middle). Created using LDmatrix65. 
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Figure 1e. Q-Q (Quantile-Quantile) plots for the BD1-MIX dataset. Theoretical quantiles 

following a Gaussian distribution are plotted on the x-axis, whereas quantiles from each of my 

dataset outputs are plotted on the y-axis. Within x Î [0,6] and y Î [0,6], the overall linearity 

reflects that association results follow a normal distribution, as expected. However, the slight 

jaggedness of the nearly linear points suggests either batch effects or truncation of values at 

some point in the analysis. 
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Bipolar Disorder, Type 1: Severe Mania, No Psychotic Features 

 

Figure 2a. Manhattan plot of the BD1-NP dataset. The total sample size includes 449 

individuals (173 affected children, 276 parents). A total of 582,349 variants are plotted as data 

points. Along the Y-axis, the data points represent the negative logarithm of p-values for 

association between any particular SNP and the phenotype of interest. The x-axis represents 

chromosomal loci; colors alternate between grey and blue to differentiate the chromosomes. 

The red and gold horizontal lines represent lenient (5.0E-6) and stringent (5.0E-8) thresholds for 

significance, although confidence in findings requires clustering of closely positioned SNPs 

above a threshold line. Despite the BD1-NP subset having a smaller sample size, a cluster of 

four intron variants (in gold), rs2273070, rs3840366, rs6924813, and rs3047738 on 6q25.3 

indicate early signs of association with non-psychotic BD. 
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Figure 2b. P-value and Regional LD plot. Close-up view of 6q25.3 SNPs in BD1-NP subset. X-

axis displays position of most significant SNP ±500,000 BP. Y-axis displays both the -log of the 

P-value and the combined recombination rate (cM/Mb). The genes that appear throughout this 

region are displayed at the bottom of the figure, with SNX9 positioned directly below the lead 

SNPs. Created using LDassoc. 
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Figure 2c. Haplotypes for the four lead SNPs on chromosome 6 in the BD1-NP subset. These 

haplotypes were calculated based on the CEU (European) population, which most accurately 

reflects the ancestry of the dataset used in this analysis, sub-setted from the CAPS-BP dataset. 

Created using LDlink. 
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Figure 2d. R2 and D’ coefficients calculated and displayed in a matrix for the four lead SNPs on 

chromosome 6 in the BD1-NP cohort shows strong linkage disequilibrium among these SNPs. 

Created using LDmatrix. 
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Figure 2e. R2 and D’ coefficients calculated and displayed in a matrix for chr6 SNPs in the BD1-

NP cohort. Strong LD among lead SNPs in the context of neighboring SNPs. Created using 

LDmatrix. 
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Figure 2f. SNX9 RNA expression overview in various tissues. SNX9 shows low tissue 

specificity and is expressed throughout the central nervous system (yellow). Data gathered from 

the Human Protein Atlas. 
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Figure 2g. SNX9 regulatory chromatin states from histone ChIP-Seq shows epigenetic states in 

brain tissues that are specifically not present in other tissues throughout the body. Data 

gathered from the Roadmap Epigenomics Consortium, 2015. 

 



  67 

 

Figure 2h. Q-Q (Quantile-Quantile) plots for the BD1-NP subset. Theoretical quantiles following 

a Gaussian distribution are plotted on the x-axis, whereas quantiles from each of my dataset 

outputs are plotted on the y-axis. Within x Î [0,6] and y Î [0,6], the overall linearity reflects that 

association results follow a normal distribution, as expected. However, the slight jaggedness of 

the nearly linear points suggests either batch effects or truncation of values at some point in the 

analysis. 
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Bipolar Disorder, Type 1: Severe Mania, With Psychotic Features 

Figure 3a. Manhattan plot of the BD1-P dataset. The total sample size includes 537 individuals 

(218 affected children, 319 are parents). A total of 582,349 variants are plotted as data points. 

Along the Y-axis, the data points represent the negative logarithm of p-values for association 

between any particular SNP and the phenotype of interest. The x-axis represents chromosomal 

loci; colors alternate between grey and blue to differentiate the chromosomes. The red and gold 

horizontal lines represent lenient (5.0E-6) and stringent (5.0E-8) thresholds for significance, 

although confidence in findings requires clustering of closely positioned SNPs above a threshold 

line. Overall, no significant findings can be discerned. However, it is interesting that while SNPs 

along 6q25.3 (gold) were indicative of association in the BD1-NP dataset, these same SNPs 

show no association whatsoever with BD1-P. This indicates that a gene within 6q25.3 may be 

associated with pure manic-depressive BD, but not psychotic features. As such, the introduction 

of psychotic features in this dataset may have created sufficient noise to eliminate any signal of 

association. 
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Figure 3b. Q-Q (Quantile-Quantile) plots for the BD1-P subset. Theoretical quantiles following a 

Gaussian distribution are plotted on the x-axis, whereas quantiles from each of my dataset 

outputs are plotted on the y-axis. Within x Î [0,6] and y Î [0,6], the overall linearity reflects that 

association results follow a normal distribution, as expected. However, the slight jaggedness of 

the nearly linear points suggests either batch effects or truncation of values at some point in the 

analysis. 
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Glossary 
 
Comma Separated Values (CSV): A common plain text file-type whereby columns are 

separated by commas. 

Diagnostic and Statistical Manual (DSM): The taxonomic and diagnostic tool for psychiatric 

disorders, published by the American Psychiatric Association. 

Genome-wide association study (GWAS): A technique in genetics used to establish 

associations between diseases and specific loci or genes. 

JavaScript Object Notation (JSON): A lightweight interchange formatted file that serves to 

maximize storage and computational efficiency (see NID). 

Linkage Disequilibrium (LD): The tendency for genes and other genetic markers to be 

inherited together because of their location near one another on the same chromosome. 

Linkage studies: Studies aimed at establishing linkage between genes. 

Locus (plural: loci): The position of a gene, marker, or mutation on a chromosome. 

Manhattan plot: A type of scatterplot used to display data with a large number of data points. 

Because the strongest associations have the smallest p-values (e.g. 10-8), their negative 

logarithms will be the greatest (e.g. 8) when plotted on the Y-axis. 

Minor Allele Frequency (MAF): the frequency at which the second most common allele 

appears in a given population. Provides useful information for distinguishing between rare and 

common variants in a population. 

NIMH Repository and Genomics Resource (NRGR): A repository in which decades of 

phenotypic psychiatric and genetic data are stored for use by grant-funded research studies. 

NRGR Identifier Dictionary (NID): A lookup table stored in the form of a highly computationally 

efficient programming data-structure (see JSON). 

Nosology: The branch of medical science dealing with the classification of diseases. 
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Pleiotropy: The effect whereby one gene has several seemingly unrelated downstream effects 

and/or products. 

Polygenic risk scores (PRS): A metric that builds off of GWAS data and adds the weighted 

effects of all of the identified genetic variants to produce a score that is predictive of latent risk 

for many phenotypes of interest. 

Population stratification: The phenomenon whereby differences in individuals’ genomes 

strictly due to their ethnic backgrounds appear to stratify multi-ethnic genetic data sets. This 

effect has to be minimized prior to conducting an analysis for association. 

Principal component analysis (PCA): A statistical approach that reduces extremely 

multidimensional data into a few principal components. 

Q-Q (quantile-quantile) plot: A graphical method for comparing two probability distributions, 

often times one being a theoretical standard normal distribution. 

Single nucleotide polymorphism (SNP): A single nucleotide position that is present in 

populations in many variant forms. SNPs tend to be inherited along with adjacent genes of 

interest. 

Symptomatology: The set of symptoms characteristic of a medical condition or exhibited by a 

patient. 

Type-I error: Also known as a false positive. Occurs when a researcher incorrectly rejects a 

true null hypothesis. It is important to use stringent P-values in association studies, where false 

positives are commonplace. 
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Protocols & Sources 
 

Data Collection 

DIVER is a private software developed by William Valentine-Cooper at the University of Ohio. 

Bill Valentine-Cooper, Senior Systems Developer 

Battelle Center for Mathematical Medicine 

Abigail Wexner Research Institute 

Nationwide Children’s Hospital 

 

Studies Utilized for Analysis 
Study BP 0 
Data and biomaterials were collected in four projects that participated in the National Institute of 

Mental Health (NIMH) Bipolar Disorder Genetics Initiative. From 1991-98, the Principal 

Investigators and Co-Investigators were: Indiana University, Indianapolis, IN, U01 MH46282, 

John Nurnberger, M.D., Ph.D., Marvin Miller, M.D., and Elizabeth Bowman, M.D.; Washington 

University, St. Louis, MO, U01 MH46280, Theodore Reich, M.D., Allison Goate, Ph.D., and 

John Rice, Ph.D.; Johns Hopkins University, Baltimore, MD, U01 MH46274, J. Raymond 

DePaulo, Jr., M.D., Sylvia Simpson, M.D., MPH, and Colin Stine, Ph.D.; NIMH Intramural 

Research Program, Clinical Neurogenetics Branch, Bethesda, MD, Elliot Gershon, M.D., Diane 

Kazuba, B.A., and Elizabeth Maxwell, M.S.W. 

 

Study 1 
Data and biomaterials were collected as part of ten projects that participated in the National 

Institute of Mental Health (NIMH) Bipolar Disorder Genetics Initiative. From 1999-03, the 

Principal Investigators and Co-Investigators were: Indiana University, Indianapolis, IN, R01 

MH59545, John Nurnberger, M.D., Ph.D., Marvin J. Miller, M.D., Elizabeth S. Bowman, M.D., N. 



  73 

Leela Rau, M.D., P. Ryan Moe, M.D., Nalini Samavedy, M.D., Rif El-Mallakh, M.D. (at University 

of Louisville), Husseini Manji, M.D. (at Wayne State University), Debra A. Glitz, M.D. (at Wayne 

State University), Eric T. Meyer, M.S., Carrie Smiley, R.N., Tatiana Foroud, Ph.D., Leah Flury, 

M.S., Danielle M. Dick, Ph.D., Howard Edenberg, Ph.D.; Washington University, St. Louis, MO, 

R01 MH059534, John Rice, Ph.D, Theodore Reich, M.D., Allison Goate, Ph.D., Laura Bierut, 

M.D.; Johns Hopkins University, Baltimore, MD, R01 MH59533, Melvin McInnis, M.D., J. 

Raymond DePaulo, Jr., M.D., Dean F. MacKinnon, M.D., Francis M. Mondimore, M.D., James 

B. Potash, M.D., Peter P. Zandi, Ph.D, Dimitrios Avramopoulos, and Jennifer Payne; University 

of Pennsylvania, PA, R01 MH59553, Wade Berrettini, M.D., Ph.D.; University of California at 

Irvine, CA, R01 MH60068, William Byerley, M.D., and Mark Vawter, M.D.; University of Iowa, IA, 

R01 MH059548, William Coryell, M.D., and Raymond Crowe, M.D.; University of Chicago, IL, 

R01 MH59535, Elliot Gershon, M.D., Judith Badner, Ph.D., Francis McMahon, M.D., Chunyu 

Liu, Ph.D., Alan Sanders, M.D., Maria Caserta, Steven Dinwiddie, M.D., Tu Nguyen, Donna 

Harakal; University of California at San Diego, CA, R01 MH59567, John Kelsoe, M.D., Rebecca 

McKinney, B.A.; Rush University, IL, R01 MH059556, William Scheftner, M.D., Howard M. 

Kravitz, D.O., M.P.H., Diana Marta, B.S., Annette Vaughn-Brown, M.S.N., R.N., and Laurie 

Bederow, M.A.; NIMH Intramural Research Program, Bethesda, MD, 1Z01MH002810-01, 

Francis J. McMahon, M.D., Layla Kassem, PsyD, Sevilla Detera-Wadleigh, Ph.D, Lisa Austin, 

Ph.D, Dennis L. Murphy, M.D. 

 

Study 2 
Data and biomaterials were collected and supported by NIMH grant R01 MH59602 (to Miron 

Baron, M.D.) and by funds from the Columbia Genome Center and the New York State Office of 

Mental Health. The main contributors to this work were Miron Baron, M.D. (Principal 

Investigator), Jean Endicott, Ph.D. (Co-Principal Investigator), Jo Ellen Loth, M.S.W., John Nee, 

Ph.D, Richard Blumenthal, Ph.D., Lawrence Sharpe, M.D., Barbara Lilliston, M.S.W., Melissa 
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Smith, M.A., and Kristine Trautman, M.S.W., all from Columbia University Department of 

Psychiatry, New York, NY, USA. A small subset of the sample was collected in Israel in 

collaboration with Bernard Lerer, M.D. and Kyra Kanyas, M.S. from the Hadassah - Hebrew 

University Medical Center, Jerusalem, Israel. We are grateful to the patients and their family 

members for their cooperation and support, and to the treatment facilities and other 

organizations that collaborated with us in identifying families. 

 

Study 49 
Data and biomaterials used in this research report were collected by the International Neuro-

Genetics Association of Spanish America and the United States (INGASU), and funded by 

NIMH grant MH69856 (Genetics of Bipolar Disorder in Latino Populations) to principal 

investigator Dr. Michael Escamilla (Paul L. Foster School of Medicine, Texas Tech University 

Health Science Center, El Paso, Texas). Additional principal investigators who participated in 

this grant were Dr. Alvaro Jerez (Centro Internacional de Trastornos Afectivos y de la Conducta 

Adictiva-CITACA, Guatemala), Dr. Ricardo Mendoza (University of California at Los Angeles-

Harbor), Dr. Humberto Nicolini (Medical and Family Research Group, Carracci S.C., Mexico 

City, Mexico), Dr. Henriette Raventos (University of Costa Rica, San Jose, Costa Rica), and Dr. 

Alfonso Ontiveros (Instituto de Informacion de Investigacion en Salud Mental, Monterrey, 

Mexico). In addition to Drs. Escamilla and Nicolini, the following contributed to the diagnostic 

best estimation process: Drs. Salvador Contreras, Albana Dassori and Rolando Medina 

(University of Texas Health Science Center at San Antonio), Dr. Regina Armas (University of 

California at San Francisco), Dr. Javier Contreras (University of Costa Rica), and Drs. Mercedes 

Ramirez and Juan Zavala (Paul L. Foster School of Medicine, Texas Tech University Health 

Science Center). 
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